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Introduction to Digital 
Design Verification

What is Design Verification?

Verification complexities
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“Design Verification is the process used to gain confidence in the 
correctness of a design w.r.t. the requirements and specification.”

Types of verification:

• Functional verification 

• Performance verification

• Timing verification

• Physical verification
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What is Design Verification?



Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

• Verification:
• Gain confidence in the correctness of a design w.r.t. the requirements and specification.

• Validation:
• Have we got the correct requirements and specification according to customer 

needs/desires.

• Building the right thing (validation) vs. building the thing right (verification)

• Note for some companies (e.g. Intel, Arm), validation means “verification”

• Other meanings of “validation”:
• Confirms that the physical realisation (e.g. silicon) of the design meets the physical (e.g. 

electrical parameters) required (“in the lab”)
• Confirms that the design functions correctly when deployed in its target environment, 

e.g. as a component of an embedded system (“in the field”)
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Verification vs. Validation 
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• There should be verification independent from design
• Verification engineers refer to the specification in disputes with the design team 

• Designers and Verification engineers both interpret the specification

Specification

Interpretation RTL Coding

RTL

VerificationInterpretation

Verification relies on both not making the same interpretation mistake!
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Verification in Context: The IC Design Process 
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Performance verification

• Must also achieve a required level of performance 
• Required throughput normally measured by running an agreed 

benchmark

• Incorrect performance can point to functional errors 
• A lot of functionality is added to improve performance
 eg: Out of order completion, caches, pre-fetching, pipelining & branch 

prediction 

• Quality of service (QoS) are performance guarantees
• Real time CPU required to guaranteed response time for interrupts
• A GPU may be required to guarantee a minimum frame rate
• An interconnect may be required to guarantee bandwidth and latency

• How can we verify these requirements?
• Comparison to a reference model  eg: check total run time compared 

to predicted
• Assertions and monitors eg: counting number of cycles latency of 

transactions
• Formal properties can find shortest trace that covers a sequence of 

events i.e.: best case performance

Non-functional verification

Safety verification

• Big impact on the design and verification process
• Well-defined and documented requirements

• Traceability to ensure all requirements implemented 
• and NO other code/functions in the design

• Verify that the design can detect intermittent errors

Power verification

• Verification of power saving features
• E.g. power islands, clock gating

• Power aware simulations to measure expected power 
dissipations
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Functional verification is only a 
subset of the verification task

Do some of these involve functional verification?
For example - verifying the “features” that support 
security might be considered as functional verification

Security verification
• Ensure secure data cannot leak to insecure areas

• Ensure no insecure access to secure data
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Verification is a major influence over 3 
key project metrics:

• Increase Quality (Effective Verification)
• Improved verification to find more bug
• And create “right-first-time” products
• Note quality is more than just verification

• Decrease Cost (Efficient Verification)
• Verification absorbs most resources – 

improving efficiency reduces costs
• Re-spins costs millions of dollars
• Potential opportunity costs.

• Shorter Timing/Schedule (Efficient 
Verification)
• Verification absorbs most resources –

efficiency reduces costs time-to-market.
• Re-spins take months
• Late to market means lost opportunity

Siemens Bi-Annual Survey (ASIC) here
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Why is Verification important?

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
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Verification 
Complexities
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• Clock and reset input
• Four 1-bit state bits
• 4-bit output
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First design: a 4-bit asynchronous counter (Verilog)

module up_counter(input clk, reset, output[3:0] counter);
reg [3:0] counter_up;

// up counter
always @(posedge clk or posedge reset)
begin
if(reset)
 counter_up <= 4'd0;
else
 counter_up <= counter_up + 4'd1;
end 
assign counter = counter_up;
endmodule

module upcounter_testbench();
reg clk, reset;
wire [3:0] counter;

up_counter dut(clk, reset, counter);
initial begin 
clk=0;
forever #5 clk=~clk;
end
initial begin
reset=1;
#200;
reset=0;
end
endmodule 

Example design and 
test bench in Verilog

Reset is asynchronous because 
independent of the clock
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First design: a 4-bit asynchronous counter

RESET Rollover

• Input space
• CLK
• RST

• State space
• 4 bits
• How many combinations?

• Output space
• 4 bits
• How many combinations?

What is the minimum 
verification plan?

Do we need to reset 
in every state?

Do we need to vary 
the clk speed?
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• Values stored in registers represent the 
state of the circuit 

• Combinational logic computes: 
• next state 
• function of current state and inputs 

• outputs 
• function of current state and inputs (Mealy 

machine) 
• function of current state only (Moore machine)
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We can represent the design as a state machine

Mealy machine

• States: S1, S2, ..., Sk 

• Inputs: I1, I2, ..., Im 

• Outputs: O1, O2, ..., On 

• Transition function: Fs(Si, Ij) 

• Output function: 
• Fo(Si) Moore
• or Fo(Si, Ij) Mealy
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State Machines representations
• 4-bit asynchronous counter

0000
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01100111
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1010
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1100

11111110

No input (move every clock)
State directly drives the output
Next state function Fs(Si) = Si +1 
Output function Fo(Si) = Si  

0000
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01100111

1000
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1010
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1100

11111110

Input = 1 control bit count_up_down
State directly drives the output
Next state function 
Fs(Si, Ij) = count_up_down ? Si +1 : Si -1 
Output function Fo(Si) = Si  

• 4-bit asynchronous up-down 
modulo 14 counter

reset reset
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State space explosion?
• Consider a 32-bit adder

• Assuming combinatorial (no internal state)

• Input space = 264

• Output space (consider the carry bit) = 233

• ShoOf course, covered if we cover the full input space

• Assuming unique input on every simulation cycle then
• Number of cycles to exhaustively verify a 32-bit adder: approx. 18 billion billion

• Approx. 10 million billion years at 1 simulation per second

• Of course, simulation runs more quickly, and we can run them in parallel

• But hopefully you get the point – this is NOT tractable

• We would also need to check the output on every cycle

• Consider RiscV CPU design
• Input space = 32-bit instruction

• Internal architectural State
• 32 x 32-bit registers

• Micro-architectural (design related) state
• For example, a Cache (which can be very large)

Main challenges:

• Input space and architectural state space are too large to cover 
• Not all combinations are possible
• For a CPU, not all of the 232 input bit combinations (=instructions) are valid
• For each CPU register, not all the 232 combinations of bit values are valid
• And even less combinations of all 32 x 32 regsiters

• Most CPU designs have large micro-architectural state too
• Cache, shadow registers, etc

• The “outputs” are effectively register values and memory 
• so how do we check these values?

Any suggestions for solutions?

Possible solutions:

• Identify the valid input and architectural state  bit combinations
• This can be VERY challenging

• And further identify the ones of main interest

• For checking purposes, check the register and memory contents
• “Grey box” probes
• Memory read instructions

We will investigate such solutions during the course
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“interesting” states

For a 4 bit, modulo 14 
accumulator

• 16 black cycles  
{0000,0001,0010, 
0011, 0100, 
0101,…,1110,1111}

• 2 red circles {1110, 
1111}

• Interesting circles? 
{0000, 1101}

For the RiscV CPU 

• There are 32 x 32-
bitregister (=21024) 

black circles per layer

• Red circles are hard to 
determine

• Orange circles are 
hard to determine
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Possible combination of state bits
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• As before the nodes are states in the search 
space
• As per the previous slide

• And the arcs are clocked transitions
• These trees are

– Very wide and Very deep

This difference in search 
strategy summarises the 
difference between 
simulation and formal 
verification
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Simulation-based Verification
Driving stimulus and Checking responses

Black box vs. white box

Verification hierarchy

1/30/2025 Copyright of Alpinum Systems Ltd. 55
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Functional Verification Approaches
Putting simulation-based approaches in context

Verification

Reviews

DynamicStatic

PrototypingSimulationFormalCode 
Analysis

Dynamic Formal

Linters

Theorem
Proving

Property
Checking

Equivalence
Checking

Silicon

FPGA

Emulation
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Testbench

Driver CheckerDUV

Basic TB architecture
• Drivers
• Drive stimulus into the DUV
• Also need to receive and process 

feedback from DUV
• For example, protocol handshakes

• Checkers 
• collect the response and check

Simulation (Dynamic)

“bidirectional” to 
represent a “handshake”

e.g. “request” and “grant” 
on a bus
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• Black Box

• White Box

• Grey Box
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Levels of Observability

DUVInputs Outputs

Inputs OutputsDUV

Inputs OutputsDUV

Monitor
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Test 
Controller

Scoreboard / 
Response Checker

Coverage 
Collector

SlaveDUV
Stimulus 
Generator

Driver Responder

MonitorMonitor

Assertions

Transaction 
Level

Monitor
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Proxy Layer

Co-ordination

Note a responder is 
driver that drives the 
responses  from the slave
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Levels
of

Verification
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• Chips/systems are divided 
into separate functional units
• Usually defined during 

specification / high-level design
• The chip architecture

• This practice is called 
hierarchical design

• There needs to be a way to 
connect the functional units
• This is typically a “bus” 

infrastructure 
• e.g. AHB or APB, Wishbone

Design Hierarchy
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top 
(System)

subsystem

unit
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total

1/30/2025 Copyright of Alpinum Systems Ltd. 64

Verification at different Design Levels

top 
(System)

subsystem

unit

unit

Total 
Bugs 
found

Time

subsystem
top

Volume
of testing

Time

Per unit

Per subsystem
top

Poll https://forms.office.com/r/6YNYwdA8cn 

https://forms.office.com/r/6YNYwdA8cn
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• What is Design Verification?

• Clarification vs. validation

• Many types of verification – we are focused on functional verification 

• Verification complexities

• Increasing design complexity

• State spaces are too large 

• Are bug free designs possible?
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Summary
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• Universal Verification Methodology (UVM) Introduction Training

• Advanced Universal Verification Methodology (UVM) Training

• System Verilog Training

• Formal Verification Training

• Design Verification for SV/UVM Training

• Design Verification for VHDL/OSVVM Training

• RISC-V Verification Training
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DV Training Courses (online, pre-recorded)

https://alpinumconsulting.com/training/ 

https://alpinumconsulting.com/training/
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