
Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

Introduction to Digital
Design Verification

What is Design Verification?

Verification complexities

30-Jan-25 Copyright of Alpinum Systems Ltd. 1

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

What is
Design Verification?

30-Jan-25 Copyright of Alpinum Systems Ltd. 2

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

“Design Verification is the process used to gain confidence in the
correctness of a design w.r.t. the requirements and specification.”

Types of verification:

• Functional verification

• Performance verification

• Timing verification

• Physical verification

30-Jan-25 Copyright of Alpinum Systems Ltd. 3

What is Design Verification?

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

• Verification:
• Gain confidence in the correctness of a design w.r.t. the requirements and specification.

• Validation:
• Have we got the correct requirements and specification according to customer

needs/desires.

• Building the right thing (validation) vs. building the thing right (verification)

• Note for some companies (e.g. Intel, Arm), validation means “verification”

• Other meanings of “validation”:
• Confirms that the physical realisation (e.g. silicon) of the design meets the physical (e.g.

electrical parameters) required (“in the lab”)
• Confirms that the design functions correctly when deployed in its target environment,

e.g. as a component of an embedded system (“in the field”)

30-Jan-25 Copyright of Alpinum Systems Ltd. 4

Verification vs. Validation

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023Introduction: Verification Independence

• There should be verification independent from design
• Verification engineers refer to the specification in disputes with the design team

• Designers and Verification engineers both interpret the specification

Specification

Interpretation RTL Coding

RTL

VerificationInterpretation

Verification relies on both not making the same interpretation mistake!

30-Jan-25 Copyright of Alpinum Systems Ltd. 9

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

30-Jan-25 Copyright of Alpinum Systems Ltd. 10

Verification in Context: The IC Design Process

Mask
DataLayout

Transistor-
Level

Model

Fab Design
Library

Gate-Level
Netlist

RTL
Model

Behavioral
Model

Micro Architectural
Design

Architectural
Specification

Concept

Functional Verification Equivalence Checking

synthesis

custom
design

(Specification) Validation

Design
for Test

Fab Post
Silicon

Physical Verification

• Manufacturing test
• Bench analysis
• Qualification
• Post-Silicon

Validation
• Product Validation

Fabrication
= Physical

Realisation

Performance Verification, Safety verification
Security Verification, Power analysis

Timing Analysis

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

Performance verification

• Must also achieve a required level of performance
• Required throughput normally measured by running an agreed

benchmark

• Incorrect performance can point to functional errors
• A lot of functionality is added to improve performance
 eg: Out of order completion, caches, pre-fetching, pipelining & branch

prediction

• Quality of service (QoS) are performance guarantees
• Real time CPU required to guaranteed response time for interrupts
• A GPU may be required to guarantee a minimum frame rate
• An interconnect may be required to guarantee bandwidth and latency

• How can we verify these requirements?
• Comparison to a reference model eg: check total run time compared

to predicted
• Assertions and monitors eg: counting number of cycles latency of

transactions
• Formal properties can find shortest trace that covers a sequence of

events i.e.: best case performance

Non-functional verification

Safety verification

• Big impact on the design and verification process
• Well-defined and documented requirements

• Traceability to ensure all requirements implemented
• and NO other code/functions in the design

• Verify that the design can detect intermittent errors

Power verification

• Verification of power saving features
• E.g. power islands, clock gating

• Power aware simulations to measure expected power
dissipations

30-Jan-25 Copyright of Alpinum Systems Ltd. 12

Functional verification is only a
subset of the verification task

Do some of these involve functional verification?
For example - verifying the “features” that support
security might be considered as functional verification

Security verification
• Ensure secure data cannot leak to insecure areas

• Ensure no insecure access to secure data

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

Verification is a major influence over 3
key project metrics:

• Increase Quality (Effective Verification)
• Improved verification to find more bug
• And create “right-first-time” products
• Note quality is more than just verification

• Decrease Cost (Efficient Verification)
• Verification absorbs most resources –

improving efficiency reduces costs
• Re-spins costs millions of dollars
• Potential opportunity costs.

• Shorter Timing/Schedule (Efficient
Verification)
• Verification absorbs most resources –

efficiency reduces costs time-to-market.
• Re-spins take months
• Late to market means lost opportunity

Siemens Bi-Annual Survey (ASIC) here

30-Jan-25 Copyright of Alpinum Systems Ltd. 13

Why is Verification important?

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

Verification
Complexities

30-Jan-25 Copyright of Alpinum Systems Ltd. 15

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

• Clock and reset input
• Four 1-bit state bits
• 4-bit output

30-Jan-25 Copyright of Alpinum Systems Ltd. 19

First design: a 4-bit asynchronous counter (Verilog)

module up_counter(input clk, reset, output[3:0] counter);
reg [3:0] counter_up;

// up counter
always @(posedge clk or posedge reset)
begin
if(reset)
 counter_up <= 4'd0;
else
 counter_up <= counter_up + 4'd1;
end
assign counter = counter_up;
endmodule

module upcounter_testbench();
reg clk, reset;
wire [3:0] counter;

up_counter dut(clk, reset, counter);
initial begin
clk=0;
forever #5 clk=~clk;
end
initial begin
reset=1;
#200;
reset=0;
end
endmodule

Example design and
test bench in Verilog

Reset is asynchronous because
independent of the clock

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

30-Jan-25 Copyright of Alpinum Systems Ltd. 20

First design: a 4-bit asynchronous counter

RESET Rollover

• Input space
• CLK
• RST

• State space
• 4 bits
• How many combinations?

• Output space
• 4 bits
• How many combinations?

What is the minimum
verification plan?

Do we need to reset
in every state?

Do we need to vary
the clk speed?

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

• Values stored in registers represent the
state of the circuit

• Combinational logic computes:
• next state
• function of current state and inputs

• outputs
• function of current state and inputs (Mealy

machine)
• function of current state only (Moore machine)

30-Jan-25 Copyright of Alpinum Systems Ltd. 25

We can represent the design as a state machine

Mealy machine

• States: S1, S2, ..., Sk

• Inputs: I1, I2, ..., Im

• Outputs: O1, O2, ..., On

• Transition function: Fs(Si, Ij)

• Output function:
• Fo(Si) Moore
• or Fo(Si, Ij) Mealy

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

30-Jan-25 Copyright of Alpinum Systems Ltd. 26

State Machines representations
• 4-bit asynchronous counter

0000

0001

0010

0011

0100

0101

01100111

1000

1001

1010

1011

1101

1100

11111110

No input (move every clock)
State directly drives the output
Next state function Fs(Si) = Si +1
Output function Fo(Si) = Si

0000

0001

0010

0011

0100

0101

01100111

1000

1001

1010

1011

1101

1100

11111110

Input = 1 control bit count_up_down
State directly drives the output
Next state function
Fs(Si, Ij) = count_up_down ? Si +1 : Si -1
Output function Fo(Si) = Si

• 4-bit asynchronous up-down
modulo 14 counter

reset reset

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

30-Jan-25 Copyright of Alpinum Systems Ltd. 27

State space explosion?
• Consider a 32-bit adder

• Assuming combinatorial (no internal state)

• Input space = 264

• Output space (consider the carry bit) = 233

• ShoOf course, covered if we cover the full input space

• Assuming unique input on every simulation cycle then
• Number of cycles to exhaustively verify a 32-bit adder: approx. 18 billion billion

• Approx. 10 million billion years at 1 simulation per second

• Of course, simulation runs more quickly, and we can run them in parallel

• But hopefully you get the point – this is NOT tractable

• We would also need to check the output on every cycle

• Consider RiscV CPU design
• Input space = 32-bit instruction

• Internal architectural State
• 32 x 32-bit registers

• Micro-architectural (design related) state
• For example, a Cache (which can be very large)

Main challenges:

• Input space and architectural state space are too large to cover
• Not all combinations are possible
• For a CPU, not all of the 232 input bit combinations (=instructions) are valid
• For each CPU register, not all the 232 combinations of bit values are valid
• And even less combinations of all 32 x 32 regsiters

• Most CPU designs have large micro-architectural state too
• Cache, shadow registers, etc

• The “outputs” are effectively register values and memory
• so how do we check these values?

Any suggestions for solutions?

Possible solutions:

• Identify the valid input and architectural state bit combinations
• This can be VERY challenging

• And further identify the ones of main interest

• For checking purposes, check the register and memory contents
• “Grey box” probes
• Memory read instructions

We will investigate such solutions during the course

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023State space exploration example

T

i

m

e

Reset
Simulation trace

Illegal states
0

1

2

3

4

ꝏ

“interesting” states

For a 4 bit, modulo 14
accumulator

• 16 black cycles
{0000,0001,0010,
0011, 0100,
0101,…,1110,1111}

• 2 red circles {1110,
1111}

• Interesting circles?
{0000, 1101}

For the RiscV CPU

• There are 32 x 32-
bitregister (=21024)

black circles per layer

• Red circles are hard to
determine

• Orange circles are
hard to determine

30-Jan-25 Copyright of Alpinum Systems Ltd. 28

Possible combination of state bits

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023Depth-first vs. Breadth-first state space search

• As before the nodes are states in the search
space
• As per the previous slide

• And the arcs are clocked transitions
• These trees are

– Very wide and Very deep

This difference in search
strategy summarises the
difference between
simulation and formal
verification

30-Jan-25 Copyright of Alpinum Systems Ltd. 29

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

Simulation-based Verification
Driving stimulus and Checking responses

Black box vs. white box

Verification hierarchy

1/30/2025 Copyright of Alpinum Systems Ltd. 55

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

Functional Verification Approaches
Putting simulation-based approaches in context

Verification

Reviews

DynamicStatic

PrototypingSimulationFormalCode
Analysis

Dynamic Formal

Linters

Theorem
Proving

Property
Checking

Equivalence
Checking

Silicon

FPGA

Emulation

1/30/2025 Copyright of Alpinum Systems Ltd. 56

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023Dynamic simulation

1/30/2025 Copyright of Alpinum Systems Ltd. 57

Testbench

Driver CheckerDUV

Basic TB architecture
• Drivers
• Drive stimulus into the DUV
• Also need to receive and process

feedback from DUV
• For example, protocol handshakes

• Checkers
• collect the response and check

Simulation (Dynamic)

“bidirectional” to
represent a “handshake”

e.g. “request” and “grant”
on a bus

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

• Black Box

• White Box

• Grey Box

1/30/2025 Copyright of Alpinum Systems Ltd. 60

Levels of Observability

DUVInputs Outputs

Inputs OutputsDUV

Inputs OutputsDUV

Monitor

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023Contemporary Testbench Architecture

H
. F

o
st

e
r:

 “
R

es
p

o
n

se
 c

h
ec

ke
rs

, m
o

n
it

o
rs

 a
n

d
 a

ss
er

st
io

n
s”

. I
n

 P
ra

ct
ic

al
 D

es
ig

n
 V

er
if

ic
at

io
n

 b
y

P
ra

d
h

an
 a

n
d

 H
ar

ri
s

(e
d

it
o

rs
).

 C
am

b
ri

d
ge

, 2
0

0
9

.

Test
Controller

Scoreboard /
Response Checker

Coverage
Collector

SlaveDUV
Stimulus
Generator

Driver Responder

MonitorMonitor

Assertions

Transaction
Level

Monitor

1/30/2025 Copyright of Alpinum Systems Ltd. 61

Proxy Layer

Co-ordination

Note a responder is
driver that drives the
responses from the slave

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

1/30/2025 Copyright of Alpinum Systems Ltd. 62

Levels
of

Verification

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

• Chips/systems are divided
into separate functional units
• Usually defined during

specification / high-level design
• The chip architecture

• This practice is called
hierarchical design

• There needs to be a way to
connect the functional units
• This is typically a “bus”

infrastructure
• e.g. AHB or APB, Wishbone

Design Hierarchy

1/30/2025 Copyright of Alpinum Systems Ltd. 6363

top
(System)

subsystem

unit

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

total

1/30/2025 Copyright of Alpinum Systems Ltd. 64

Verification at different Design Levels

top
(System)

subsystem

unit

unit

Total
Bugs
found

Time

subsystem
top

Volume
of testing

Time

Per unit

Per subsystem
top

Poll https://forms.office.com/r/6YNYwdA8cn

https://forms.office.com/r/6YNYwdA8cn

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

• What is Design Verification?

• Clarification vs. validation

• Many types of verification – we are focused on functional verification

• Verification complexities

• Increasing design complexity

• State spaces are too large

• Are bug free designs possible?

30-Jan-25 Copyright of Alpinum Systems Ltd. 65

Summary

Copyright o
f A

lpinum Systems Ltd. Ju
ne 2023

• Universal Verification Methodology (UVM) Introduction Training

• Advanced Universal Verification Methodology (UVM) Training

• System Verilog Training

• Formal Verification Training

• Design Verification for SV/UVM Training

• Design Verification for VHDL/OSVVM Training

• RISC-V Verification Training

30-Jan-25 Copyright of Alpinum Systems Ltd. 66

DV Training Courses (online, pre-recorded)

https://alpinumconsulting.com/training/

https://alpinumconsulting.com/training/

	Slide 1: Introduction to Digital Design Verification
	Slide 2
	Slide 3: What is Design Verification?
	Slide 4: Verification vs. Validation
	Slide 9: Introduction: Verification Independence
	Slide 10: Verification in Context: The IC Design Process
	Slide 12: Non-functional verification
	Slide 13: Why is Verification important?
	Slide 15
	Slide 19: First design: a 4-bit asynchronous counter (Verilog)
	Slide 20: First design: a 4-bit asynchronous counter
	Slide 25: We can represent the design as a state machine
	Slide 26: State Machines representations
	Slide 27: State space explosion?
	Slide 28: State space exploration example
	Slide 29: Depth-first vs. Breadth-first state space search
	Slide 55: Simulation-based Verification
	Slide 56: Functional Verification Approaches Putting simulation-based approaches in context
	Slide 57: Dynamic simulation
	Slide 60: Levels of Observability
	Slide 61: Contemporary Testbench Architecture
	Slide 62
	Slide 63: Design Hierarchy
	Slide 64: Verification at different Design Levels
	Slide 65: Summary
	Slide 66: DV Training Courses (online, pre-recorded)

