Introduction to Digital
Design Verification

What is Design Verification?

Verification complexities

What is
Design Verification?

/>
What is Design Verification?

“Design Verification is the process used to gain confidence in the
correctness of a design w.r.t. the requirements and specification.”

Types of verification:

* Functional verification

* Performance verification
* Timing verification

* Physical verification

30-Jan-25 Copyright of Alpinum Systems Ltd. 3

/>
Verification vs. Validation

 Verification:
* Gain confidence in the correctness of a design w.r.t. the requirements and specification.

e Validation:

* Have we got the correct requirements and specification according to customer
needs/desires.

 Building the right thing (validation) vs. building the thing right (verification)
* Note for some companies (e.g. Intel, Arm), validation means “verification”

e Other meanings of “validation”:

* Confirms that the physical realisation (e.g. silicon) of the design meets the physical (e.g.
electrical parameters) required (“in the lab”)

* Confirms that the design functions correctly when deployed in its target environment,
e.g. as a component of an embedded system (“in the field”)

30-Jan-25 Copyright of Alpinum Systems Ltd. 4

Introduction: Verification Independence

* There should be verification independent from design
» Verification engineers refer to the specification in disputes with the design team
* Designers and Verification engineers both interpret the specification

Verification relies on both not making the same interpretation mistake!

RTL Coding

T
K‘« I

Interpretation Verification

Interpretation

Specification

30-Jan-25 Copyright of Alpinum Systems Ltd. 9

Verification in Context: The IC Design Process

— »| Architectural Design

: Specification for Test

Behavioral

Concept Model syntHesis
v
Micro Architectural RTL
Design Model

custom
design

A 4

A

(Specification) Validation

Functional Verification

Equivalence Checking

B

Gate-Level
Netlist

Transistor-
Level
Model

\ 4

Layout

Mask
Data

Physical Verification

[

A

P«

Timing Analysis

\ 4

A

Performance Verification, Safety verification

v

A

30-Jan-25

Security Verification, Power analysis

Copyright of Alpinum Systems Ltd.

Fabrication
= Physical
Realisation

CONSULTING

Post
Silicon

Manufacturing test
Bench analysis
Qualification
Post-Silicon
Validation

Product Validation

10

Non-fu nctional Veriﬁcation Functional verification is only a

subset of the verification task
Performance verification

Must also achieve a required level of performance Safety verification

* Required throughput normally measured by running an agreed
benchmark

* Big impact on the design and verification process

* Well-defined and documented requirements

Incorrect performance can point to functional errors
* Alot of functionality is added to improve performance
eg: Out of order completion, caches, pre-fetching, pipelining & branch
prediction
Quality of service (QoS) are performance guarantees cge s
* Real time CPU required to guaranteed response time for interrupts Power verification
* A GPU may be required to guarantee a minimum frame rate e \/erification of power Saving features
* An interconnect may be required to guarantee bandwidth and latency

How can we verify these requirements?
* Comparison to a reference model eg: check total run time compared

* Traceability to ensure all requirements implemented

and NO other code/functions in the design

* Verify that the design can detect intermittent errors

* E.g. powerislands, clock gating

* Power aware simulations to measure expected power

to predicted dissipations
* Assertions and monitors eg: counting number of cycles latency of . . e .
transactions & 8 Y Y Do some of these involve functional verification?
 Formal properties can find shortest trace that covers a sequence of For example - verifying the “features” that support

events i.e.: best case performance

Security verification
 Ensure secure data cannot leak to insecure areas

security might be considered as functional verification

* Ensure no insecure access to secure data
30-Jan-25 Copyright of Alpinum Systems Ltd. 12

Why is Verification important?

Verification is a major influence over 3 Siemens Bi-Annual Survey (ASIC) here
key project metrics:

Percentage of ASIC Project Time Spent in Verification

* Increase Quality (Effective Verification)
* Improved verification to find more bug
* And create “right-first-time” products
* Note quality is more than just verification

* Decrease Cost (Efficient Verification) 50% -60%

» Verification absorbs most resources —
improving efficiency reduces costs

* Re-spins costs millions of dollars Median project time spent
* Potential opportunity costs. in verification

* Shorter Timjng/Schedule (Efficient
Verification)

* Verification absorbs most resources — T 0%20% >20%30% > 30%40% >40%50% >50%60% > 60
eff|C|ency reduces costs time-to-market. Percentage of ASIC Project Time Spent in Verification

* Re-spins take months 2014 ==2018 ==—2022

Source: Wilson Research Group and Siemens EDA, 2022 Functional Verification Study

* Late to market means lost opportunity Unresticed] © Siemens 20221 Functional Verifation Study SIEMENS

Design Projects

Figure 8-1. Percentage of IC/ASIC Project Time Spent in Verification

30-Jan-25 Copyright of Alpinum Systems Ltd. 13

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/

Verification
Complexities

First design: a 4-bit asynchronous counter (Verilog)

* Clock and reset input
* Four 1-bit state bits
* 4-bit output

CONSULTING

Example design and
test bench in Verilog

module up_counter(input clk, reset, output[3:0] counter); module upcounter_testbench();
reg [3:0] counter_up; reg clk, reset;
wire [3:0] counter;
// up counter
always @(posedge clk or posedge reset) up_counter dut(clk, reset, counter);
begin initial begin
if(reset) clk=0;
counter_up <= 4'd0; forever #5 clk="clk;
else end
counter_up <= counter_up + 4'd1; initial begin
end reset=1;
assign counter = counter_up; #200;
endmodule reset=0;
end
endmodule

Reset is asynchronous because
independent of the clock

30-Jan-25 Copyright of Alpinum Systems Ltd.

19

/>
First design: a 4-bit asynchronous counter

CLK

l COUNT _reg|3:0]
-1 CLR

—> C

plusOp i . Q - < > COUNT[3:0]
n . . o
—(’\MBOI What is the minimum
10(3:0) \j

e verification plan?
RTL ADD
Do we need to reset
in every state?
* Input space | ¢ State space * Output space
e CLK e 4 bits * 4 bits Do we need to vary
e RST * How many combinations? * How many combinations? | the clk speed?

o HO g WavesDeR

30-Jan-25

Copyright of Alpinum Systems Ltd. 20

. ° ‘
We can represent the design as a state machine

 Values stored in registers represent the * States: Sy, Sy, ..., S
state of the circuit * Inputs: I, 1, .., |
* Combinational logic computes: e Outputs: O, 0,, ..., O,
* next state - :
 function of current state and inputs * Transition function: FS(Si’ IJ)
* outputs * Output function:
* function of current state and inputs (Mealy * Fo(S.) Moore
machine) !

* or Fo(S;, I,) Mealy

* function of current state only (Moore machine)

{ output - Outputs Next State :X%WQWWQ&WWW

logic

I“P"‘S< moglm/ ;m:uTlTXZ;(3TX4F5
{“Iog?‘ice}uextsmm .

Current State

Mealy machine 'Pinumsystems Lid. §

State Machines representations

* 4-bit asynchronous up-down
modulo 14 counter

CONSULTING

e 4-bit asynchronous counter

/’ reset

/ reset

1101 1111
/" —~ 1110 " ——* 0000 \ / 1101 > 0000 \
1100
1100
oogl i 0001
19:1 No input (move every clock) 0010 10'11 X
State directly drives the output 5 Input = 1 control bit count_up_down 0010
1010 | Next state function Fs(S) =S, +1 ¥ 1620 State directly drives the output $
t Output function Fo(S) = S. 0011 - Next state function 0011
! | Fs(S;, I;) = count_up_down ? S, +1:§;-1 §
1001 0100 1001 Output function Fo(S)) =S, v
\ _— \ 0100
1000 /_/
TN 1000 |«

0111 |e

0110

30-Jan-25

/ 0101

—

0111

'

Copyright of Alpinum Systems Ltd.

0110

/ 0101

26

State space explosion?

 Consider a 32-bit adder

* Assuming combinatorial (no internal state)
* Input space = 2%
* Qutput space (consider the carry bit) = 233

* ShoOf course, covered if we cover the full input space

e Assuming unique input on every simulation cycle then
* Number of cycles to exhaustively verify a 32-bit adder: approx. 18 billion billion

* Approx. 10 million billion years at 1 simulation per second
* Of course, simulation runs more quickly, and we can run them in parallel
* But hopefully you get the point — this is NOT tractable

* We would also need to check the output on every cycle

* Consider RiscV CPU design
* |Input space = 32-bit instruction

* |nternal architectural State
* 32 x 32-bit registers

* Micro-architectural (design related) state

* For example, a Cache (which can be very large)

30-Jan-25

CONSULTING

Main challenges:

* Input space and architectural state space are too large to cover
* Not all combinations are possible
* Fora CPU, not all of the 232input bit combinations (=instructions) are valid
* For each CPU register, not all the 232 combinations of bit values are valid
* And even less combinations of all 32 x 32 regsiters

* Most CPU designs have large micro-architectural state too
* Cache, shadow registers, etc

* The “outputs” are effectively register values and memory
* so how do we check these values?

Any suggestions for solutions?

Possible solutions:

* Identify the valid input and architectural state bit combinations
* This can be VERY challenging

* And further identify the ones of main interest

* For checking purposes, check the register and memory contents
* “Grey box” probes
* Memory read instructions

We will investigate such solutions during the course

Copyright of Alpinum Systems Ltd. 27

-

State space exgl oration example
. Possible combination of state bits Simulation trace CONSULTING
‘ lllegal states ‘ _

“interesting” states

For a 4 bit, modulo 14 ‘ ' . ‘ .

accumulator

* 16 black cycles “.‘."“ ““‘

{0000,0001,0010,
0011, 0100,

0101,...,1110,1111}
* 2 red circles {1110, ‘. ‘ “ “‘e‘.“‘.
- 000000000

* Interesting circles?
{0000, 1101}
For the RiscV CPU .‘."r‘?.'
 Th 32 x 32-
B:t?{éig{glr (=§(102|4> 0000060
ack circles per layer . ‘ ‘ ‘
000

» Red circles are hard to ‘

determine . ‘ ‘ ’ ‘ ‘ .

* Orange circles are

hard to determine , _
30-Jan-25 Copyright of Alpinum Systems Ltd.

/>
Depth-first vs. Breadth-first state space search

This difference in search
strategy summarises the
difference between
simulation and formal
verification

Depth-first search Breadth-first search

* As before the nodes are states in the search
space
* As per the previous slide
* And the arcs are clocked transitions

°* These trees are
— Very wide and Very deep

30-Jan-25 Copyright of Alpinum Systems Ltd. 29

CONSULTING

Simulation-based Verification

Driving stimulus and Checking responses
Black box vs. white box

Verification hierarchy

1/30/2025 Copyright of Alpinum Systems Ltd. 55

Functional Verification Approaches
Putting simulation-based approaches in context

Verification

Reviews

1/30/2025

=

Static
Code Formal
Analysis
Dynamic Formal
Linters
Equivalence Property Theorem
Checking Checking Proving

Copyright of Alpinum Systems Ltd.

[roama]
[sior]
e

[emuin |

CONSULTING

56

[>

Dynamic simulation

CONSULTING

Simulation (Dynamic)

Basic TB architecture

* Drivers
e Drive stimulus into the DUV

* Also need to receive and process
feedback from DUV

Checker * For example, protocol handshakes
* Checkers
* collect the response and check

Testbench

Driver

Copyright of Alpinum Systems Ltd. 57

/>
Levels of Observability

* Black Box Outputs
000 T
. Inputs = DD Outputs
* White Box oo T
—>
Inputs — L {o A Outputs
HOV el
* Grey Box N

| Monitor |

1/30/2025 Copyright of Alpinum Systems Ltd. 60

Contemporary Testbench Architecture

CONSULTING

)

S

g Scoreboard / *

&z Response Checker

® A A

: Test C

= es overage

©Q < H o

g Controller Collector 9

; *Assertions
2 &

e bk

5 g Monitor Monitor | Monitor Note a responder is
©

2 S e e B . por

£E AA AA AA driver that drives the
52 responses from the slave
; S

3 v | Proxy Laver |

g Transaction | Stimulus :

0 £ —»| Driver » DUV »| Responder Slave

2 5 Level Generator *_<

. O

g & —

38 Co-ordination

=

1/30/2025 Copyright of Alpinum Systems Ltd. 61

1/30

/2025

Levels
of
Verification

[>

Design Hierarchy

* Chips/systems are divided
into separate functional units

* Usually defined during
specification / high-level design
* The chip architecture

* This practice is called
hierarchical design

* There needs to be a way to

CONSULTING

. . D Configy
connect the functional units m
* This is typically a “bus”
infrastructure ‘
* e.g. AHB or APB, Wishbone sranch Predeton o :ﬂl

BR-Target Addr Cache
Return Stack

Multiply ALU
Divide Right

e

1/30/2025 Copyright of Alpinum Systems Ltd. 63

[>

Verification at different Design Levels

Volume
of testing

CONSULTING

Clusterl Cluster2 Video
socket socket socket
~ AXI AXI AXI
N
S NIC 301
~
ACE ACE ™ ACE-Lite ACE-Lite ACE-Lite
1 Matrix subsystem

A '

e
slave

iy

MuI_tIpIr
Divide Right

Time * Q'*r
. | Y
Poll https://forms.office.com/r/6YNYwdAS8cn
1/30/2025 Copyright of Alpinum Systems Ltd. 64

https://forms.office.com/r/6YNYwdA8cn

Summary

CONSULTING

* What is Design Verification?
* Clarification vs. validation

* Many types of verification — we are focused on functional verification

* Verification complexities
* Increasing design complexity

 State spaces are too large

* Are bug free designs possible?

30-Jan-25 Copyright of Alpinum Systems Ltd. 65

/>
DV Training Courses (online, pre-recorded)

https://alpinumconsulting.com/training/

* Universal Verification Methodology (UVM) Introduction Training
* Advanced Universal Verification Methodology (UVM) Training

e System Verilog Training

* Formal Verification Training

* Design Verification for SV/UVM Training

 Design Verification for VHDL/OSVVM Training

* RISC-V Verification Training

30-Jan-25 Copyright of Alpinum Systems Ltd. 66

https://alpinumconsulting.com/training/

	Slide 1: Introduction to Digital Design Verification
	Slide 2
	Slide 3: What is Design Verification?
	Slide 4: Verification vs. Validation
	Slide 9: Introduction: Verification Independence
	Slide 10: Verification in Context: The IC Design Process
	Slide 12: Non-functional verification
	Slide 13: Why is Verification important?
	Slide 15
	Slide 19: First design: a 4-bit asynchronous counter (Verilog)
	Slide 20: First design: a 4-bit asynchronous counter
	Slide 25: We can represent the design as a state machine
	Slide 26: State Machines representations
	Slide 27: State space explosion?
	Slide 28: State space exploration example
	Slide 29: Depth-first vs. Breadth-first state space search
	Slide 55: Simulation-based Verification
	Slide 56: Functional Verification Approaches Putting simulation-based approaches in context
	Slide 57: Dynamic simulation
	Slide 60: Levels of Observability
	Slide 61: Contemporary Testbench Architecture
	Slide 62
	Slide 63: Design Hierarchy
	Slide 64: Verification at different Design Levels
	Slide 65: Summary
	Slide 66: DV Training Courses (online, pre-recorded)

