Verification Futures
Conference

Austin Marriot South

Thursday 12 September 2024

Sponsored by

o smont /A C adence
45 BREKER" pouos S YIOPSYS

Participating Companles

J orrent K| TEXAS ARM it 5

Clear Lake

Chip Design

Test/Product
Engineering

Embedded Systems

T=SS0OLVE
Hardware A HERO ELECTRONIX VENTURE
Engineering

e

Silicon & Systems
Solution Partner

Robust Infrastructure
Test Floor | Reliability &
STPI Smart Lab

Expert Engineering Team
90% Technical Staff

KX Quality Processes
Upto 30% Cycle
Time Reduction

CoE

ARM, RISC-V Subsystem and 5G and High High Performance Automotive
Analog Block Development Frequency RF Solutions Compute Solution Compliance Solution

Automotive Data Centre/ Industrial/loT Avionics Semiconductor
Enterprise

www.tessolve.com | Email: sales @tessolve.com

08:30

09:25

09:30

10:15

10:30

11:00

11.30

12:30

Agenda (AM)

Arrival: Breakfast and Networking

Welcome: Mike Bartley, Tessolve Semiconductor Ltd

Keynote Speakers
Hemendra Talesar (Startups (Bitstar Technologies, Planorama Design, others))

User Top Verification Challenges
Vijay Kanumuri (Renesas Electronics)

Paul Graykowski (Cadence Design Systems)
Refreshments and Networking

Multi-Track Session

Track 1 - CPU User Presentations [Lonestar Ballroom — Salon A+B]
11:30 Mike Thompson (OpenHW Group)
11:50 Varun Koyyalagunta (Tenstorrent)

12:10 Vibarajan Viswanathan (Condor Computing)

Track 2 - Training Session 1 [Lonestar Ballroom — Salon C]

11:30 Doug Smith (Doulos)

Track 3 - UVM for AMS Verification [Lonestar Ballroom — Salon D]

11:30 Peter Grove & Steven Holloway (Renesas)

Lunch and Networking

13:30
14:00
14:20

14:40

15:00

15:30

16:30

Agenda

(PM)

Adnan Hamid (Breker Verification System)

Dilip Kumar (TessolveDTS Inc)
Larry Lapides (Synopsys)

Vikram Khosa (ARM)

Refreshments and Networking

Multi-Track Session

Track 1 — Latest Topics in Verification

[Lonestar Ballroom — Salon A+B]

15:30 Nianhang Hu (University of Nebraska - Lincoln)

15:50 Rahul Kande (Texas A&M University)

16:10 Ishag Unwala (University of Houston Clear Lake)

Track 2 - Training Session 2

15:30 Doug Smith (Doulos)

Track 3 — VHDL Verification

15:30 Espen Tallaksen (EmLogic)

Event Closes

[Lonestar Ballroom - Salon C]

[Lonestar Ballroom — Salon D]

FLOOR PLAN

Floor Plan

Bluebonnel

Stairs

Sycamore B

Sycamore

Sycamore A

Entrance/Exit

Magnolia
| one Star Salon [
Ballroom
Longhorm
__________ g
c
o
Salon A Salon B Salon C 'g
=
Capitol g
— Business Center Prefunction Area
Alamo
bront Desk M Club

o=

Flevators

Lobby

Wrangler

Entrance/Exit

Bar & Restaurant

Notes

CALL FOR PAPERS

Whatever your specialty, Verification Futures provides an excellent opportunity to share your
experiences and insights on the key technical and industry challenges we face in verification.

Submit an Abstract for VF2025

We are now seeking submissions for presentations and papers describing interesting and
innovative experiences related to challenges faced in hardware verification. These submissions
should include a brief description of the ASIC, SoC and FPGA verification challenges that need to
be addresses and/or innovative solutions to improving verification. Abstracts should be targeted
toward a technical audience of hardware verification engineers. Abstracts may also address the
safety and security issues relating to verification.

Submission Dates

e Call for Papers Opens UK & USA 12 September 2024
e Final Presentations Required UK 31 March 2025
e Final Presentations Required USA 30 June 2025

Abstract Submissions

Abstract submissions should be no more than 2,500 characters and include a short biography of
the speaker. All abstracts will be reviewed and notice of acceptance will be sent via email.

To submit your abstract please sent to — mike.bartley@tessolve.com and for guidance please visit
https://www.tessolve.com/verification-futures/

About Verification Futures 2025

Verification Futures is a unique one-day conference, exhibition and industry networking event
organized by Tessolve to discuss the challenges faced in hardware verification. The event gives
the opportunity for end users to define their current and future verification challenges and
collaborate with the vendors to create solutions. It’s also an excellent opportunity to network and
catch up with other verification engineers across Europe & USA.

mailto:mike.bartley@tessolve.com
https://www.tessolve.com/verification-futures/

Notes

Mike Bartley

Tessolve Semiconductor Ltd
Senior Vice President — VLSI Design

Welcome Message

Biography

Dr Mike Bartley has over 30 years of experience in software testing and hardware
verification. He has built and managed state-of-the-art test and verification teams inside a
number of companies (including STMicroelectronics, Infineon, Panasonic and start-up
ClearSpeed) and also advised a number of companies on organisational verification
strategies (ARM, NXP and multiple start-ups).

Mike successfully founded and grew a software test and hardware verification services
company to 450+ engineers globally, delivering services and solutions to over 50+ clients in
a wide range of technologies and industries. The company was acquired by Tessolve
Semiconductors, a global company with 3000+ employees supporting clients in VLSI, silicon
test and qualification, PCB and embedded product development in multiple vertical
industries.

Mike is currently a Senior VP at Tessolve supporting VLSI globally with a focus on helping
companies to incorporate the latest verification techniques and strategies into their
verification flows and building verification teams to support these companies implement
them on IP and SoC projects. He is also responsible for the Tessolve Centres of excellence
running all R&D project with Tessolve, including building a new Al capability across all
Tessolve products and services.

Mike has a PhD in Mathematics (Bristol University), and 9 MSc’s in various subjects
including management (MBA), software engineering, computer security robotics and Al,
corporate finance, and blockchain and digital currency. He is currently studying part-time
for an MSc in quantum computing with the University of Sussex and for the use of
technology in healthcare with the University of Glasgow.

Tessolve would like to thank the sponsors and participants of the
2024 Verification Futures Conference

A HERO ELECTRONIX VENTURE

Notes

Hemendra Talesara

Startups (Bitstar Technologies, Planorama Design, others)
Advisor

Rethinking Verification Leadership: Ready or Not, Here
Comes Generative Al

Keynote Speaker

Abstract

The scale and ever-increasing complexity of chip design in the semiconductor industry
have always posed a challenge for verification. We are all too familiar with the escalating
costs of missed defects and long verification cycles. Project timelines have made
leadership stick to legacy methods and often risk aversive. Unfortunately, sticking to only
tried and true methods can put you out of the game. Generative Al is a game-changer
technology. Its a disruptive force that will transform chip verification practices. From
automation to augmentation, it will complement and enhance our most advanced method
available today. We will look at how everything can be accelerated, from brainstorming,
test planning, design verification reviews, scenario generation, and improved coverage to
finding corner cases. It does have challenges, but nothing unsurmountable. Its time to push
boundaries. Let's explore and rethink verification.

Biography

Hemendra is a known name in verification with over 35 years of experience. He worked for
IBM, Synopsys, AMD, and many others and led many projects through the entire
verification life cycle, from initial architecture exploration to design implementation to
tapeout. His projects included CPUs, GPUs, Wireless, Networking, Telecom, Solid State
Drive, and various peripheral IPs. He is a Certified Corporate Director, Advisor, and Mentor
to startups. He is deeply into disruptive and transformative technology's technical and
societal impact. He will explore the implications of next-generation Al on Verification
Processes.

. PLANORAMA :

Notes

RETHINKING
VERIFICATION
LEADERSHIP

READY OR NOT, HERE COMES GEN-AI

Hemendra Talesara
Advisor, Mentor

Verification Startups PLAN 0 RAMA

L= Bitstar
DESIGN Technologies
- —r
o WHY GEN-AI IS A GAME CHANGER? /1
* WAY BEYOND Al/ML ANALYSIS
+ CREATES NEW CONTENT WITHOUT PROGRAMMING AND INSTRUCTION
* OUT OF THE BOX THINKING /SOLUTIONS
+ FEEDS ON DIGITAL DATA (IT IS PLENTIFUL NOW), RECOGNIZES PATTERNS
* FOR EXAMPLE, CHATGPT HAS DIGESTED
+ AL PUBLIC DOMAIN INFORMATION ON WEB AVAILBALE ON THE DATE OF CREATION
+ MILLIONS OF BOOKS/PUBLICATIONS IN DIGITAL
+ PLENTY OF PROOF POINTS
+ PRODUCTIVITY BOOSTER o
+ ROUTINE AUTOMATION TO CREATIVE NEW IDEA
+ A COLLABORATOR/PARTNER
+ TOP 4 ROI INCLUDES J
+ (1) SW ENGINEERING (2) R AND D (3) CUSTOMER OPERATIONS (3) MARKETING AND SALES o) /
- ~—
- WHY GEN-AI IS A GAME CHANGER? /2
* Al IS EVERYWHERE
* GENERAL PURPOSE TECHNOLOGY
* MULTITUDE OF APPLICATIONS
* SPEED AND SCALE ARE UNPRECEDENTED
+ GET ON BOARD
* YOUR COMPETITION HAS
* DONT BE LEFT BEHIND
* FASTEN YOUR SEAT BELT e
* GUARD RAILS ARE A MUST
* MANAGE RISKS (THERE IS PLENTY TO WORRY ALSO) J
S
" b /i
- ~—
& WHAT DO WE CARE ABOUT?
GOALS MEANS
* A FIRST PASS SILICON * TESTS, REGRESSIONS AND DEBUG
* NO SHOWSTOPPER BUG * COVERAGE CLOSURE
* WITHIN SHRINKING SCHEDULE * COMPLIANCE TO REQUIREMENTS’
* WITH RESOURCES AVAILABLE * LEGACY AND REUSE
* WITHIN BUDGET 2 * DOCUMENTATION, REVIEWS AND SIGNOFF
e
HOW CAN GEN-AI / LLM HELP? /!
R~ 9
St \ /

-/

N

LLMS — LIMITATIONS AND WORKAROUND

LINGUISTICALLY COHERENT

WORLD IS AMAZED AT ITS OUTPUT
TRAINED ON BIG DATA;

TRILLONS OF TOKENS DO IT WELL AND QUICKLY GENERATE
COHERENT TEXT.

PERFORM MEMORIZATION

SOMETIMES COHERENT RESULTS COULD APPEAR AS REASONED,
BECAUSE DATA PATTERNS MADE IT POSSIBLE

PROBABILSTIC PREDICTION COULD BE ABSURD (HALLUCINATION)
BIASED

NOT REASON CONSISTENTLY

THEY CAN NOT IDENTIFY STRUCTURES
THEY DON'T HAVE ANY SEMANTIC UNDERSTANDING
THEY DONT THINK SLOW

LLMS CAN BE TAUGHT TO REASON TO A DGREE OR
IMPROVE ACCURACY

* DECOMPOSE AND STEPWISE PLANNING, BACKTRACKING.
/ASK IT TO REFLECT ON ITS OUTPUT
HUMAN FEEDBACK, CLARIFYING QUESTIONS
GROUNDING (WITH CONTEXT ABOUT EXTERNAL
WORLD)

BETTER TRAINING WITH HIGH QUALITY DATA|

RAG — IMPROVES ACCURACY, REDUCE HALLUCINATIONS
FOR DOMAIN SPECIFIC TASKS (EVEN THOUGH,
FUNDAMENTAL REASONING ABILITY REMAINS LIMITED FOR LLM)

OTHER ENRICHMENT METHODS

* THEY DONT DO MATH
* THEY DON'T REASON DEDUCTIVELY

M — {

"3 GEN-Al WORKFLOW
Fine Tuned Model

Foundation Model

=

& A FEW GEN-AI TERMS

PROMPT ENGINEERING — TEACH LLM TO RESPOND TO A QUERY (WITH GUIDANCE)

RAG (RETRIEVAL AUGMENTED GENERATION) — ADDING KNOWLEDGE FROM EXTERNAL SOURCE (OUR PDF, SPECS, PLANS ETC.)

REINFORCEMENT LEARNING WITH HUMAN FEEDBACK — (RLHF) - IT'S A WAY TO ALIGN AN Al AGENT TO HUMAN PREFERENCE BY
MONITORING THE OUTPUT AND PROVIDING THE FEEDBACK.

FINE TUNING — IMPROVING A PRE-TRAINED FOUNDATION MODEL WITH NEW EXAMPLES FOR SPECIFIC TASKS OR USE CASE

TRAINING — (OR PRE-TRAINING) RETRAIN OR CREATE A NEW MODEL TO MEET YOUR NEEDS (EXPENSIVE)

LARGE (OR SMALL?) LANGUAGE MODEL (LLM) — A TEXT GENERATOR (LIE AUTO-COMPLETE ON YOUR PHONE) MODEL THAT LEARNS PROBAILISTIC
RELATIONSHIP OF WORDS DURING A VERY COMPUTE INTENSIVE TRAINING WITH MASSIVE AMMOUNT OF DATA. IT PREDICTS THE NEXT WORD
(AKA TOKEN) STARTING FROM YOUR INPUT TEXT (PROMPT) EG. CHATGPT, LLAMA, GEMINI ETC.

FOUNDATION MODEL ~ SAME AS LLM, DIFFERENCE IS IN SCOPE AND USE. LLMS ARE CONSIDERED A SUBSET OF FOUNDATION MODEL. WHILE |
LLM PROCESS LANGUAGE, FOUNDATION MODEL ALSO INCLUDES MULTIMODAL DATA SUCH AS VOICE, IMAGES AND SO ON.

“‘\J_/ |

</
/

PROMPT ENGINEERING

* PRIMING

* STYLE AND TONE INSTRUCTIONS

* HANDLING ERRORS AND EDGE CASES
* DYNAMIC CONTENT

* OUTPUT FORMATTING

FINE TUNING

RETRIEVAL AUGMENTED GENERATION
(RAG)

RETRIEVAL AUGMENTED GENERATION
(RAG)

FINE TUNING

AGENTIC REASONING

BY ANDREW NG

AGENT PATTERNS

BY ANDREW NG

—

VERIFICATION: WHERE IS THE DATA? “/

DATA IS EVERYWHERE

Verificatios Regression
Strategy
Coverage
Plan

Strategy Plan Testbench Verify Signoff

VERIFICATION GEN-AI PROOF POINTS

* PLANORAMA DESIGN (BASED IN AUSTIN, TEXAS) CEO, MATT GENOVESE
* BEST DEMONSTRATES USE OF RAG, FINETUNING, PROMPT ENGINEERING TO ADVANCE VERIFICATION METHODOLOGY
* RISC-5 DEMO ON YOU TUBE (LINK)
* ABILITY TO ACCESS DISPERSED DATA ACROSS THE DEPARTMENT
* RISC 5 INSTRUCTION TEST GENERATION
* STRUCTURED TEST PLAN REVIEW
* FINDING GAPS BETWEEN SPEC AND THE PLAN
* FINDING BUG IN RTL
* FAST INFORMATION RETRIEVAL RELATED TO BUG AND SPECS
VERILOG CODE GENERATION
* A BRAINSTORMING PARTNER
* EDA AUTOMATION RETHINK
* WORKING WITH SEMICONDUCTOR ORGS
TO ENABLE CUSTOMIZED GEN-AI FLOW FOR DESIGN AND VERIFICATION

APPLICATION OF THE GEN-AI

ADVANCED CONCPETS TO VERIFICATION

* TBD

VERIFICATION GEN-AI PROOF POINTS

1. QUALCOMM'S AI-DRIVEN VERIFICATION:
* QUALCOMM USES Al TO ACCELERATE COVERAGE CLOSURE IN CHIP DESIGN VERIFICATION
* AUTOMATING THE GENERATION OF TESTBENCH STIMULI
* PROVIDING ANALYTICS TO ENHANCE TESTBENCH QUALITY

2. AWS GENERATIVE Al FOR SEMICONDUCTOR DESIGN
* AUTOMATING TASKS LIKE CODING, DEBUGGING

3. NVIDIA
* USING Al IN VERIFICATION AND DESIGN

4. GOOGLE
* USING Al TO DESIGN NEW CHIPS

VERIFICATION GEN-AI PROOF POINTS

* UVM AND SYSTEM VERILOG TESTBENCH

 TRIALS OF USING GENERATIVE Al FOR APB UVM TESTBENCH GENERATION BY DIANA
DRANGA , ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL, VOL. 34, NO. 2, 75-84, 2024

* SYSTEM VERILOG GPT

i RETHINK VERIFICATION EADERSHIP
ot Al CHALLENGES

W =

{ (&)

bl RETHINK VERIFICATION EADERSHIP o
p Al CHALLENGES

o TAKEAWAY S

v BIG ACCELERATION OF
v SPEC/PLAN GAPS REVIEW
¥ TEST GENERATION
¥ COVERAGE CLOSURE
IMPROVED PROCESS AUTOMATION i
FUTURE PROOF VERIFICATION ARCHITECTURE

RA: RETHINK, RE:

CONTACT US

WWWBITSTAR-TECH.COM,

 HEMENDRATALESARA@BITSTAR-TECH.COM

Vijay Kanumuri

Renesas Electronics
Senior Principal

Challenges in Verification for Automotive Applications

Challenge Paper

Abstract

Design verification targeted for Automotive SoCs provides several challenges spanning
technical, compute, safety, reliability, advanced technologies and complexity of modern
vehicles. We will discuss these aspects as part of presentation.

Biography

Vijay has a rich 16 years of experience in leading Design Verification teams across SOC
Design Verification, Platform IP Design Verification, HSIO/Networking/Infrastructure IPs
domains. In various capacity as Design Verification lead, he has led verification across
many breakthrough products and platform definition in Automotive and Industrial space.
He joined Texas Instruments after his graduation in master’s in computer engineering from
UT Austin. In his role starting in IP development and leading SOC DV, he has been
instrumental in developing a platform methodology for verification across multiple product
lines as well as leading end-to-end SOC DV execution for successful 16nm Automotive
ADAS SOCs including post-silicon Test development. He led vendor Technical Review
Meetings, evaluating, onboarding new tools, and driving architecture, test plan reviews
and execution for first pass silicon success. In his previous role as Design Manager
responsible for HSIO/Networking/Infrastructure IPs, he was leading the architecture for
low-cost platform and networking IPs, IP procurement and Management Review meetings
with external vendors to drive roadmap decision and alignment.

LENESAS

Notes

AUTOMOTIVE
VERIFICATION
CHALLENGES

VIJAY KANUMURI

Senior Principal - Renesas

R ——— RENESAS
AUTOMOTIVE VERIFICATION HOTSPOTS
Verification
\ Challenges ,
—"
208 R Bt Crporston Al ights esre, Page? RENESAS

SAFETY & COMPLIANCE

Warket Product
Requirements. Requirements. d

Emulation Verification

+ 15026262 certification
+ Mapping req to testcases /
Traceabily | + DV Requirements and coverage collection

« Test planning and test pass/fail criteria
« Tool certification
Viethodaioay| * Safety Aware verification

« Permanent Fault Injection
- Transient Fault Injection
Faut nection| » Test case for high fault coverage

203 Ransas Bocronic Corporaton A s esred Page3 RENESAS
~
* Al/Video / Display / APU performance — High bandwidth
« DDR Performance and efficiency
* Structural Latency calculation across multiple NoCs
* In built monitors in VIPs or EDA tools that gather
ADAS + Long simulation times for usecase traffic)
, R
+ Real Time deadlines and latency measurement
* Mix of real time and non-real time traffic scenarios
+ DMA performance with peripherals (UART/CAN..)
Gateway « Built-in monitor to flag error for failing deadlines
Domain Controller | . Accuracy of measurements and modeling of variability
MCcu /)
P S—— Paged RENESAS

LOW POWER

* Understanding System requirements and breaking it down to Unit and SoC verification
« Power domain dependencies and validation of the spec
« Power measurement using EDA tools from waveform and annotation to gates
Functional | * Custom VIP development and checkers for state transitions. Need scalability across hierarchies
Verification « Clock gating complexity for dynamic power reduction
)) 0
« Late in the design cycle
« Isolation values and spec content need to be done ahead of UPF sims
« Slower run times and tool dependencies with x-prop and UPF enabled
UPF * Power domain definition (i i ies) and i intent
« Library support for Power Aware RTL
Power Aware J
[E T ———— Pages RENESAS

[— RENESAS

Paul Graykowski

Cadence Design Systems
Product Marketing Director

Al and GenAl for Verification Productivity

Platinum Sponsor

Abstract

The chip and system design industry faces a growing productivity challenge, with
complexity on pace to increase 100X over the next decade. The complexity is outpacing the
industry’s ability to train new engineers, presenting companies with substantial risk. Al is
being actively applied to the productivity challenge, showing great promise in improving
efficiency by ten times or more. Cadence is further addressing this challenge through a
series of advancements, which include accelerated compute, application of high-speed
engines, and optimization with Al and Generative Al. EDA can benefit greatly by applying Al
with the engineer-in-the-loop approach. This presentation will explore Cadence’s Al
accelerators for debug and formal proof analysis. In addition, we will also examine how a
Retrieval-Augmented Generation (RAG) integrated with large Language Models (LLMs) can
significantly reduce LLM hallucinations. Finally, we will delve into the application of
copilots for assisting verification engineers with documentation, specifications, and
planning.

Biography

Paul has over 25 years of expertise in the design and verification of SoCs. His diverse career
encompasses technical roles in corporate and field application engineering as well as
technical and product marketing. Currently, Paul is focused on product marketing and
management for Cadence’s Xcelium Simulator. Previously, he drove the application of
IPXACT and Network on Chip at Arteris. During his 20-year tenure at Synopsys, Paul
specialized in Verification IP and methodologies, evolving from Vera and VMM to
SystemVerilog and UVM. His professional journey also includes positions at Compaq (HP),
Intel, and Cirrus Logic. Paul earned his BSEE from Texas A&M.

cadence

\ \ cafiegce / =
Verisium Al-Driven
-; Verlﬁcatlon

\ Leverage blg dataa
*verification productivi

N ~N
* e
<

&y " A
S8

KI and GenAl for Verification Productivity

Paul Graykowski, Product Marketing Director, System and Verification Group
September 2024 cadence

Productivity Challenge in Chip and System Design

Not Enough
Engineers

Engineering Talent Shortage Now
Top Risk Factor

Over the
Next Decade

FEBRUARY 29TH, X1 BY

cadence’
Al — Accelerating System Design Productivity
AI-DRIVEN
SYSTEM
DESIGN
AUTOMATED
RTL DESIGN
AUTOMATED REUSE
CELL-BASED
AUTOMATED DESIGN
TRANSISTOR-
LEVEL DESIGN
MANUAL
CIRCUIT
DESIGN
2030 e
cadence

Cadence Al Strategy

Accelerated Compute

&

cadence’

Power of Al-Driven Solutions
Catalyze the engineer

Human
Intuition,
Judgement,
Experience

Al Driven

z

£

3

=

g

8

o Al Algorithms

8 Parallelism,

Access,

Classification

Data Volume
cadence’

Verisium Al-Driven Verification Platform

Verisium™ Al-Driven Verification

[__PinDown il _ wavettiner il _AutoTriage
Verisium Copilot SpecMiner

| Formaial W Simal | Ongoing Research TBD

Jasper™ Xcelium™ Palladium® Protium™ Helium™
Formal Simulation Emulation Prototyping Virtual Platform

cadence’

Major Al Flows for Verification

cadence’

Verisium Al-Driven Debug Apps

(D
signal rst @ T=432dns
3x reduction post- 6h vs. 1 week 30x faster root
regression failure to debug 95 cause
triage failures

Al source code hot
spot analysis = .
- . cadence

Verisium SimAl

Regression
Compression

Stimul
- Relatad hits
to target

New bins covered
2x fewer sims

z =

Qualcomm — “We observe as much -
as 20x reduction in CPU cycles and ‘Em =

find SimAl very useful for hard to hit

o
P o
cross coverage bins.’ P
CadenceLive Silicon Valley 2024 =
"
o men 20,000 G0 0000 100,000 120,000
Number of Simulations

cadence’

FormalAl: Smart Proof Automation Framework

Proof Success Rate
A 50% 5% 1.2x

a nt
Proof Profiling Data Proof Caching Mutt

6% 1.0x
+ Keep engine-level * Reuse existing * Use Reinforcement 2% 24x
settings that result if constraints Learning to find :’; ::‘
worked before and COI best macro-level ik b
unchanged settings .
LY X J
Y) 3
Optimi gressi Obti t-of-the-box proofs

R Find more bugs /Em Better convergence (4 Faster proofs

[

cadence’

Resource Optimization

cadence’

An enhanced flow with AutoFocus

Verisium Manager Regression

Targeted Verisium
Manager Regression

oFocus

run_202 @

a6

Make Changes

{

Module 4

Design Snapshot
cadence’

SmartRun

+ The goal of Smart Run is to provide the fastest turn around time for a regression and improving
verification throughput

* Flow
- Learning the typical run durations for tests

- Reports that allow the user to decide what queuing policy and farm resources to apply to optimize the
regression throughput.

- Reshuffle and launch new regressions using the new queuing policies.

Regression wi singie que In vai_order.
Tumeround e is 26
TAT=26

—
S S S =
T
[T

cadence’

TAT 14

Generative Al for Verification

cadence’

LLM Expectations and Reality

Write formal properties for my
3 channel round robin arbiter

Now the magic happens...
&
g !

cadence’

Mitigating Hallucinations with RAG and LLM as Judge
Retrieval Augmented Generation

Groundedness > S
v cadence

Generative Al Flow for SVA

- Syntax issues
- Equivalence

- Intersection

- Implication

- Conflicts

- Ranking

- Clustering

Copilot Qualify

cadence’

Verisium SpecMiner: Al Driven Verification Generation
Ongoing Research

Co2
() | —
Team >
Review SVA
= — 5
Specification vPlan

LLM / NLP pipeline extracts

features from specification

documents Specialised LLM Agents O e
uvm

Past Projects = >
cadence

Verisium Copilot Capabilities

Cadence®
JedAl SpecMiner -
Infrastructure ~ —— :
—— Scripting o
ser | i

Docs search #mat is monitor

P~

1,

Follow-up Questions

cadence’

;
:

Summary

cadence’

Verisium Al-Driven Verification Platform

Verisium™ Al-Driven Verification
[inooun [l wavottner—|
[Spechiner |

[simAl | Ongoing Research TBD

t\ I\ ¢

Jasper™ Palladium® Protium™ Helium™
Emulation Prototyping Virtual Platform

cadence’

cadence

Track Session

CPU User Presentations
Lonestar Ballroom — Salon A+B

FLOOR PLAN

Magnol
Bluebonnet
| one Star Salon D
Ballroom
Longhc
7777777777 g
Stairs 5
Salon A Salen B fan C o
£
5
Cani &
Sycamore B apitol
B _Sy_' amore | Al +—8B Cent Prefunction Area
MO
Sy 2 A .
Sycamore Wrane Jer ‘ I t Desk M Club
tnt Jhxit Flevators
L obby Bar & Restaurant
| Entrance/[xit

We would be grateful if you could move to the track session as quickly as possible

Notes

Mike Thompson

OpenHW Group
Director of Engineering, Verification Task Group

Accelerate your adoption of RISC-V with CORE-V-VERIF

User Paper

Abstract
CORE-V-VERIF is an open-source project supported by the OpenHW Group. Its goal is to
provide an open-source environment and work-flow that can be deployed onto any RISC-V

processor core. Since December of 2020, OpenHW Group members have successfully used
CORE-V-VERIF for end-to-end verification of more than six RISC-V cores.

Biography

Mike is a functional verification engineer and manager who has been involved in all
aspects of the discipline: simulation, emulation, prototyping and formal verification. He is
strong proponent of coverage driven processes in the pursuit of first-time-right silicon.

Notes

OpenHW Group

Proven Processor IP

Accelerate your adoption
of RISC-V with CORE-V-VERIF

Mike Thompson

mike@openhwaroup.org

© OpenHW Group

N

b N

Objectives cormy

Is Open Source for You?

Introduce the OpenHW Group, who we are and what we do, with specific emphasis
on functional verification of RTL models of RISC-V cores.

Introduce “CORE-V":

CORE-V (pronounced “core five") is the family of RISC-V processor cores curated by the OpenHW
Group.

Written in SystemVerilog.

Permissively licensed open-source code and documentation.

Quantitative verification metrics.

Take-aways:

The OpenHW Group applies industry leading tools and methodologies to fully verify its open-source
RTLIP.

CORE-V-VERIF is an op SVIUVM for RISC-V cores.
CORE-V-VERIF can be used as-is, or by using select components such an Instruction Stream
Generator, UVM Bus Agents, Assertion Libraries and Functional Coverage.

OPENHW

arous

oPENHW* and a%, CORE-V*

The OpenHW Group is a not-for-profit, global organization.

The OpenHW ecosystem is driven by members (corporate & academic) bringing
together HW and SW designers collaborate in developing open-source cores,
related IP and SW.

Primary focus is the CORE-V Family of open-source RISC-V processors.

International footprint with developers in North America, Europe and Asia.

Strong support from industry, academia and individual contributors worldwide.

" OPENHW © OpenHW Group 3

e Permissively licensed open-source IP provides the “freedom to innovate™

Reduces the barrier to adoption.

Enables proprietary extensions of open-source reference implementations.
Promotes “competitive collaboration” through sharing of development resources.
Reduces productization costs.

e Open-Source does not mean “free lunch™

You will need commercial tools to run CORE-V-VERIF.
Engineers do not work for free.
Closing coverage requires tens-to-hundreds of thousands of compute-hours.

o CORE-V benefits those organizations that:

Do not view processor IP as a differentiator for their business.
Can take advantage of potential cost savings of using open-source |P.
Wish to develop or technical biliti

OPENHW

arous

' oPENHW: Members

10% alenTec e QWS AMO aunc

@= Frrecgiboniory H e

% powrorde o
R Borie G o oo [B

csem aatum @ e @ucond Empaiot. B

mawe @ GF WAoot Ereninainiaza
g ouoos i rediat (ARIOS Rk
Jemen = & reowon

s €7 £ B

Tiaces [Em S—

SoulEipion Quemsemics @ T3

OPENHW

A Different Kind of Open Source Company ¥,

e The OpenHW Group is all about Industrial Grade practises for Industrial Grade

Products:
Use of commercial EDA tools and methodologies.
Compi ive and usable di ion.

Well implemented RTL
Quantitative verification metrics

e You get out what you put in:
The OpenHW Group does not employ a large staff of design, verification and implementation
engineers.
95% of the engineering effort, EDA tooling and compute infrastructure used to develop CORE-V IP
comes from our Members.

! OPENHW

Task Assignment, Execution and ClI S\

CORE-V

Committers:
- assign new tasks
or issues to Contributors
- review and merge pull-requests

Run CI
Regression on
the Cloud

MemberCo 1

Each Contributor uses
their Company’s
compute and tools

OPENHW ® OpentW Groug

‘wlh /

Qualitative Quality: The TRL Scale %

:::’ ——— corREV
st N OpenHW
' Technology
Outputs
[.’ snamrs
] e
< col OpenHW IP
T Adopters

i memerciol application. Successf

OPENHW

PRODUCTION

© OpenHW Group 8

Quantitative Quality: TRL-5 e

o An OpenHW development project has achieved TRL-5 when it has completed all the
deliverables defined in the OpenHW Group TRL5 for COREV RTL IP Template checklist:
Find it on GitHub at https:/github.com/openhwgroup/programs (link)

e This is a spreadsheet with worksheets for:
Documentation
IP Licensing
RTL Design
Simulation Verification
Formal Verification
Software Requirements

OPENHW

What is CORE-V-VERIF?

e AGitHub repository!
Directly supports verification of most
CORE-V cores.

e Three usage models: * coreaverit e Goman @ b
Direct - instantiate your RTL directly - N "
into CORE-V-VERIF. : e
Indirect - clone CORE-V-VERIF
structure into your environment.
Library - re-use select components as

desired
' OPENHW o
CORE-V-VERIF Implementation
| Test-program and Environment configuration (YAML)
UVM Testcase
Debug r Interrupt 1
| Virtual Sequences | .+ Virtual Sequences
y S - ‘wI:'] -7 ———
Generator |, T E— o) — m*ﬁ“!’ ! Feov Cfg |
; || Virt. Segs. - | I ISACOV
Toolchain 1 J 1 & Agent
ration — |
T S o el o
Toolchain e | v & |
- : E L+ Scoreboard
corav-av r s
Virt. Seq.
RM Cig |
OPENHW SystemVerilog UVM Environment

Important Points

e Everything represented in the previous slide is permissively licensed open-source:
RTL code for the core.
User Manual for the core.
Testbench code.
Agents
Testcases.
Assertions.
Functional coverage.

e The Reference Model is the exception:
Commercial Option: ImperasDV from Synopsys.
Open-Source Option: custom Spike extension

OPENHW

Usage Models: Direct

Add a new “core-specific” directory in
CORE-V-VERIF for your specific core.

Create a core-specific testbench layer.

Add core-specific extensions.

Pros:

Gets you up and runhing fast *
Reuse extensively library of scriptware for running -
simulations, regressions, etc. >
80% of the way there for 20% of the effort. - o

e Cons:
Verfication environment is not in the same repo as
RTL
That 20% is a lot of work!

csnn vins

OPENHW e

Direct use of CORE-V-VERIF

...everything marked with a “%" can be a core-specific extension.

| Test-program and (VAML)
UVM Testcase
|* Debug ® Interrupt
Virtual Sequences .1 Virtual Sequences |
: e lenjlcg) A ‘)
G = Debug Intemupt Feov Cfg
et ‘ Peripheral il i o
1| GVirt. Seqs. ", ISACOV
Toolchain w Tk | #Agent
E onturnon | | 1. [y [SVA
GNU or LLYM e : I
T Tedkchan ﬁ*wm T4 Memory - | | ot £
— orev Y [1
corev-dv h L 17 Agent(s) conEY g! Scoreboard
* Load8Store | RTL
Virt. Seq.
*
—r DPI
e B RISC
-
OPEN r—fW SystemVerilog UVM Environment

Usage Models: Indirect

repository. 2" @

Allows for more customization.

Foo i vt
e Currently only used by the CVAB, whichisa » we [P

highly parameterizable, application-class

core. e i

serFRwDETR

' OPENHW"

Use CORE-V-VERIF as a Library

Mem Cfg —_—
¥l | ‘ R =)
L e RISC M mE | sacov

3 nt
corev-dv Age

' OPENHW

Summary / Wrap-up

CORE-V

e CORE-V is a family of permissively licensed open-source RISC-V cores curated by the
OpenHW Group.

e CORE-V IPis Industrial Grade.
e “There is no they”: benefitting from open-source means getting involved.

e CORE-V-VERIF is the SV/UVM verification environment for CORE-V |P.

Thank You

1 OPENHW
i,

Notes

Varun Koyyalagunta

Tenstorrent
Design Verification Engineer

Accelerating RISC-V testbench development with open
source RISC-V RTL and emulation

User Paper

Abstract

Today’s shorter product time to market makes silicon verification runway shorter.
Tenstorrent is working on CPUs based on RISC-V architecture for many Al applications.
Since this is an emerging processor environment having RTL ready is not an easy task. Once
RTL is available the testbench should be ready for both simulation and emulation
workloads. Also, we should have all test collaterals ready to go, which involves firmware,
drivers, applications etc.

Biography

Today’s shorter product time to market makes silicon verification runway shorter.
Tenstorrent is working on CPUs based on RISC-V architecture for many Al
applications. Since this is an emerging processor environment having RTL ready is
not an easy task. Once RTL is available the testbench should be ready for both
simulation and emulation workloads. Also, we should have all test collaterals ready
to go, which involves firmware, drivers, applications etc.

At Tenstorrent we solved this problem by adopting RTL from RISC-V open source.
This enabled us to shift left the emulation and simulation testbench creation. We
use a standard memory interface, AXI, standard instruction interface, RISC-V Formal
Interface (RVFI), and the open source CVA-6 RISC-V cpu to develop testbench
architecture and collateral in advance with full architectural instruction-by-
instruction checking.

' tenstorrent

&

This helped us complete the testbench development and test infrastructure ready
without our custom CPU RTL. When the inhouse RTL is ready, we could be able to
replace our custom CPU RTL with open source CVA-6 processor.

This methodology helped us significantly shift left the testbench and test
infrastructure readiness. Due to this, we could able to innovate in the area of test
collateral creation, making emulation ready infrastructure and were confident to
run application level tests the minute RTL was available. We used ZeBu for
emulation work on this accelerated testbench creation with open source RTL.

Accelerating RISC-V
testbench
development with open
source RTL and
emulation

Varun Koyysiegunta, or Anoos, Jishen Zhang

‘ tenstorrent

Introduction
« Tenstorrent seeks to develop a high performance RISC-V core and bring it
market ASAP

+ Emulation is key to that effort
— Emulation is a must for software development and function verification

» How do we keep DV out of the critical path?
— Tenstorrent is starting infrastructure, DV, and RTL from scratch
— No prior in-house emulator setup

I tenstorrent

Agenda

« Typical testbench bringup cycle on emulation

* What can we leverage from previous work to accelerate bringup.
— Common protocols (AXI, RVFI)
— Open source code (RISC-V soft cores)

« Overview of testbench developed based on those components

' tenstorrent

Goal: Boot Linux on a Custom RISC-V Core

Typical Order of Events

RIL Development

fm——

Ermuiatien T

Shift left verification using open source
Accelerate testbench development

+ RISC-V has a rich library of off-the-shelf free IP and VIP

= A testbench can reuse free VIP and be built around free IP
— Allows the testbench and test development to be done in parallel with RTL development

— Atestbench with free IP can achieve goals like booting Linux without waiting on any custom
RTL

* When the custom RTL IP is ready, it can be dropped into the existing testbench
— Testbench functionality and bugs have already been flushed out on the free IP

Shift left using Open Source RISC-V Core

Errulation Sringup

RISC-V Open Source IP and VIP

-IP
— CVAB core with AXI to memory

= VIP

— Instruction Set Simulators
— swerv-issiwhisper
— CVAB harness has RVFI for checking

= All the components needed to develop and test a RISC-V CPU testbench

= Custom RISC-V core can be dropped-in later

CVA6 RISC-V Open Source IP

» From the openhwgroup

« 6 stage in-order single-issue CPU

« Compiles into 67k LUTs: Fraction of 1 FPGA

« Enables fast compile iterations to debug testbench

o

tenstorrent

rv_tester Testbench

To be open-sourced

AV TESTER

rv_tester Testbench

» Multi-threaded, asynchronous, message-passing based testbench built for
configurability and maximum performance on emulation and simulation

» RVFI and AXI packets from CVAB are transferred over DPI to C++ code
» These packets are asynchronously dispatched to components that subscribe to them

« Components (bridge, clint, etc) are configurable through a registry
~ Enabled or disabled based on DUT's configuration

« Test chaining on emulation is supported by reconstructing the registry between tests
— “Warm reset” of the testbench
— Saves ~2 minutes of overhead between tests

P

tenstorrent

Connecting HW and SW in the Testbench
Example YAML code

Optimizing Transactions for Performance

Example C++ code that can subscribe to that transaction

= Called asynchronously on a separate thread, so that the emulator thread is not
waiting

ulation Results

« Testbench iteration time drastically reduced
- Emulator builds on the Open-SourceCVA6 are much faster than our custom core
- ~1 hour vs ~12 hours
- 67k LUTs vs 15M LUTs
~ Single issue in-order core vs 8 wide out-of-order custom RISC-V core
* Bugs found and fixed in emulation while custom core is brought up
— Tools issues - SV constructs not fully supported in emulator
— Testbench issues - various checker bugs missed in simulation
— Verilog issues
- 1 testbench tracing bug in cvaé
- 1 RTL bug in cvaé
— Linux image issues - throwing out unneeded features to speed-up boot
« Performance for custom RISC-V core on Linux boot: <5 minutes to boot
— Full instruction checking: 990 kHz (working to improve)
— No instruction checking: 1.5MHz (working to improve)

tenstorrent

Conclusion

Accelerated testbench bring-up on Open-Source CVAG prior to custom core

* 4 months of saved DV development time after RTL is ready!

.

Testbench is ready to run billions of cycles every day to run regressions

Vibarajan Viswanathan

Condor Computing
Sr.Principal DV Lead

Memory Patterns — Reusable Stimulus for RISC V Memory
Subsystem Verification

User Paper

Abstract

Verifying Memory Subsystem in CPU is hard. The design blocks span from Load store to
caches, NOCs and to the memory. In RISC, the max access size is 8 bytes at the Load Store
Unit. The caches operate on whole 64bytes (32byte) cache line size. DV challenges span
across a) Coherency: The verification of Hit or Miss, Snoops on L1, L2 and L3. b) Memory
ordering between LD, ST c¢) Data Forwarding from ST to LD, d) Aligned vs unaligned
transfers e) NOC Latency modelling f) Complex address patterns. This presentation
proposes a reusable Memory Pattern generator that can stress the memory subsystem
from Unit level to full core level.

Biography

Vibarajan (Viba) Viswanathan has over 25 Years of experience in Semiconductor and EDA
industry, mostly in Design Verification. Viba holds a bachelor’s degree in Electronics and
Communication Engg., and a PG Diploma from UT Austin on AIML. His work experience
spans across companies that include 0-In Design Automation, Synopsys, Mentor Graphics,
Marvell Semiconductor, Samsung, Centaur and Microsoft. He was part of the pioneering
team on Assertions and Assertion IPs, Formal Verification and Verification IPs. Viba’s
domain expertise includes RISCV CPU/GPU Memory Subsystem, Load Store, Cache
Coherency, Memory Ordering, Shader Core, Coherent Interconnects, CHI, DDR/LPDDR
Memory Controllers. Viba is an avid follower of conferences and the various Verification
Methodologies that include Constrained Random, Formal Property Verification, Assembly
level instruction generation and AIML DV Use cases.

CONDOIR

Q
—_—

Notes

CONDOR

. o
Q

Me’}rory Patterns — Reusable
Stimulus for RISC V Memory
Subsystem Verification

Viba Viswanathan,
Sr. Principal DV Lead, Condor Computing
August 2024

Acknowledgements

1) Kiran Puttaswamy, Sr. Principal DV Lead, Condor
Computing

2) Doug Good, DV Director, Condor Computing

3) Ty Garibay, CEO, Condor Computing

CONDOIR

(RN v ¥ ———

MSS Verification
Scope

Load Store Unit Level (Single Core, Mulii Slice)

LSURTL LSURTL LSURTL LSURTL

L1RTL

BFM (VIP)

Bus Latency 12 Cache
Mod odel
UVM/SY

L1 Cache

SET
0
1
2
3
4
5
TAG Valid Dirty Enable

v) Virtual Address = 39,48,57 (
Physical Address = 44-52 Bits SV39,5V48,SV57)

TAG valid Dity g:‘:ble

g S

CL [5:0) = 64 Bytes
SetAddr [12:6] = 128 Sets
TAG [63:13)

CL Data = 64Bytes, 512bits!

8 Banks
Way 0
Way 1
Way 2
Way 3

Way 0
Way 1
Way 2
Way 3

Way 0
Way 1
Way 2
Way 3

CPU Memory Subsystem (Full Core Level)

MSS Verification Scope

Load Store

Loads, Stores, Atomics (Near/Far), 10 Access
CL Aligned . Unaligned (Cross Cacheline)
Bank Aligned, Unaligned (Cross Data Bank)

MMU: Page Tables. TLBs, Exceptions, Hypervisor,
Virtualization

Risc V Size : 2. 4. 8 Byles (Max)
ROB Replay:

Speculative Execution (LD Pushed ahead
when ST Address Unknown)

granch Misprediction
Data Forwarding. Memory Ordering, Coherency

How will you handie when muttiple STs,
LDs to same cacheiine outstanding?

OO Responses from BUS Interface (DDR)
How fo model OO0 Responses

Multicore Coherency

Two cores writing to same cache line

co

+1

Correct Sequence:

c

1

2

12

13

23

33

34

+10

Incorrect Sequence 35

36
37
38
39
40
41
51
52

DRAM DRAM

+ Cache Hit, Miss, Snoops. Evictions,
LRU Schemes,

« Hit: 248 Bytes
* Miss: Full Cacheline (64Bytes)
+ Coherency

Cache Hit, Miss. Snoops, Snoop Filter,
Evictions, LRU Schemes

+ Access Size : Full Cacheline (64Bytes)
-+ Coherency
+ Faratomics

Multiple modified copies

co c1

L1 (M) ST tosame CL (Snoop)
L2 (M)
13 (M)

Which is most recent modified
data?

Memory Ordering — Within a Core

* Same Cache Line Stores (STO, STO, STO,..ST0)
» Order needs to be maintained
* Same Cache Line Loads (LDO, LDO, LDO,..LDO)
Follow on Loads could reuse the return data of the first load
* Store to load forward : STO,LDO
= Different Cache Line Address Loads/Stores: (STO,LD1,5T2,573,LD4)
* No ordering restrictions
* Same Cache line, Mixed Loads and Stores, Non-Overlapping bytes
= No ordering restrictions
Same Cache line, Mixed Loads and Stores, Same/Overlapping bytes (ST0,LD0,ST0,STO,LDO)
= AllLDs, STs have to be in order

STs will be merged in order before LD data is written to Physical Register

Memory Ordering - Multicore

= Core0-810,Corel-Ld1, Core2-

Ld2,Core3-Ld3 (Different Cacheline) * ARM, RISC V: No Ordering
= AtL3:1D1.LD2STO,LD3,LD4,LD5 = STOLD3.LDI1,LD2
= Intel (TSO): Total Store Order = LD3,LD2ST0LDI
= LD1,LD25ST0,LD3,LD4,LDS « LD3,LD2LD1,sT0
LD2,LD1,STO,LD4,LD3,LD5 = LD1,sTOLD2LD3
. D1,LD2,STO,LD3,LD5,LD4 « LDI,LD3STOLD2
= LD2LD1,STOLD5,LD4,LD3 .

CONDOIR

Memory Patterns

Conder Compuing Allights reserved. Copright 2023

Load / Store Instructions (RVé4,I,M,A,C,F,D,ZICSR) = §?

= LB,LBU,LH,LHU,LW,LWU,LD ABY (RV128l inst)
= SB,SH,SW,SD
= Sizes

= B-Byte (8 Bits)

* H-Half Word (16 Bits)

= W -Word (32 Bits)

= D -Double Word (64 Bits)

Load Register/Address level Dependency

Address dependency
Sample Scenario
addirdo, rs1, 0xSa;
sbrl, offset(rd0);
sb r2, offset(rd0);

addirdl, rsl, Oxdead;
addirdz, rs1, Oxdead;

* Register dependencies
* RAW, WAR, WAW

* Single

addirdo, rsl, 0xSa;
Ib r0, offset(rd0);
b rl, offset(r0);
Ib r2, offset{rl);
Ib r3, offset(r2);

®* Multiple

Ib rb, offset{ra+8);

sb r4, offset({rd1);
sbrs, offset(rd2);

addird, rs1, 0x5a
//immediate value;

Same type Load, Continuous Address

addird, rs1, 0xa5

//immediate

Ib rd, offset{ra+64);
sh rd, offset(rb);

Hent

addird, rs1, Oxdeadbeef

value: //immediate value;

lor1, 0frd): b r1. offset(rd): Ibort.offset(id);

Ibri, 1(rd); Ibrl, offset(rd+1); Ibri, offset(rd-1);

lor1, 2(rd); b r1, offset{rd+2); Iorlosstiet2):

Ibrl, 3(rd); Ibr1, offset(rd+3); Ibrl, offset(rd-3):

lor1, 4(rd); b r1, offset(rd+4); Ibor, offset(rd-4);

lorl, 5(rd): Ibrl, offset(rd+5); Ibr1, offset(rd-5);
//Upto 5 or 10 Cacheline // Up to 5 or 10 Cacheline size // UP fo 5 or 10 Cacheline size

size and put them in loop

and put them in loop

and put them in loop

Mixed Loads or Stores: Continuous Address

addird, rs1, imm value;

//Up

lbr1, offset(rd);

Ihrl, offset(rd+1):
Ibu rl, offset(rd+1+2);
Ihu 1, offset(rd+1+3);
Iw r1, offset(rd+2+4);
Iw offset(rd+4+6);

to 5 or 10 Cacheline

//size and put them in loop

addira, rs1, imm value;

sb rd, offset(ra);
shrd, offset(ra+1);
sw rd, offset(ra+2+4)
sw rd, offset(ra+4+6)

// Up to 5 or 10 Cacheline size
// and put them in loop

Mixed Loads and Stores, Continuous Address

addira,
addird,

rs1, imm address;
rs1, imm data;

Ihrd, offset(ra+1+2);
shu rd, offset(ra+1+3);

sb rd, offset(ra);
Ib rd, offset(ra);
shrd, offset(ra+1);
Ih rd, offset(ra+1);

sbu rd, offset(ra+1+2);

lhu rd,

offset(ra+1+3);

sw rd, offset(ra+2+4);
Iw rd, offset(ra+2+4);
sw rd, offset(ra+4+6);
Iw rd, offset(ra+4+6);

// Up to 5 or 10 Cacheline size and

put the

m in loop

Loads & Stores, Continuous Address, two level dependencies

addiraO, rs1, imm addr; Ib rb, offset(ra+1+3);
addirdo, rs1, imm data; Ihrd, offset(ra+1+3);
lb ra, offset(ra0); shu rd, offset(rb);

Ib rd, offset(rd0); Ibrb, offset(ra+2+4);

Ihrd, offset(ra+2+4);
sw rd, offset(rb);

Ib rb, offset(ra+4+6);
Ihrd, offset(ra+4+¢);
sw rd, offset(ra+4+6);

sb rd, offset(ra);

Ib rb, offset(ra+1);

b rd, offset(ra+1);
sh rd, offset(rb);
Ibrb, offset(ra+1+2);

lhrdofisefftaslte); // Up to 5 or 10 Cacheline size
sbu rd, offset(rb); and put them inloop

Base Patterns - Overlapping Addresses

addird, rs1, immediate value;
Ihrl, offset(rd);
Ihrl, offset(rd+2 - 2/2);
Iw rl, offset(rd+4 — 4/2);
lhrl, offset(rd+8 — 2/2);
Iw rl, offset(rd+10 - 4/2);
Iwrl, offset(rd+14 - 4/2);

// Up to 5 or 10 Cacheline size and put them in loop

Read / Write Collision : Bank Size is 8 Bytes.

= No overlapping bytes , Overlapping

Byte level overlapping

Word level overlapping

Dword level overlapping
= Same Cacheline different Bytes (No Collision)
= Same Cacheline same bytes (Collision)

CONDOIR

\%
—

Test Compose

Strategy

Test Compose Strategy 1: "Base Patterns”

= Instruction Types:
o Loads, Stores, Mixed Loads/Stores, Compressed Loads, Stores
= LB,LBU,LH,LHU,LW,LWU.LD
= SB,SH.SW.SD
= Patterns:
> Address, Register Dependency
Single level, Multi level,
o Increment, Decrement, Overlapping, Repeat (Same Address)

LIy

Test Compose Strategy 2 : “Address Pattern, Step Size”

= Address Patterns :

Random or Selective patterns

Selective Patterns
Increment, Decrement, Repeat

= Continuous, Overlapping

Step Size
Same step size (Repeat / Same Address)
Variable Step Size
Fixed Step Sizes : Byte(8Bits), Half Word(16), Word(32), Dword(64)
CL, SET, TAG Sizes

Overlapping Variants:
Byte level Overlapping Addresses
Word level , dword level overlapping

LI

Test Compose Strategy 3: “Test Options”

= Aligned/unadligned:

« How to create unaligned : Using offsets or addresses.
= Testlength (No of Transactions)
= One time run or Repeat Count

Ly

How to compose a test ?

= Final Test = Pick a "Base Pattern™ + Pick a “Type of Address
Pattern” + Pick a “Test Option”

LIy

CONDQOIR

—_—

":\ll_

Results/Conclusion

Condor Computing Allnghts reserved. Copyght 2123

Conclusion

= Scalable Stimulus:
= Generated Configurable, Reusable Assembly code

» Same patterns could be generated for Unit level and Subsystem
Level: LSU, L2, L3

= Results (LSU)
200+ Generated Tests
100+ Explicit tests
60% Fails on Generated, 40% fails on Explicit tests

Notes

Track Session

Training Session 1
Signing Off with Formal
Lonestar Ballroom — Salon C

FLOOR PLAN

Magnol
Bluebonnet
| one Star Salon D
Ballroom
Longhe
__________ g
Stairs E
lon A Salon B lon € o
c
=
&
Sycamore B Capitol
B _Sy_' amore | T—8B Cent Prefunction Are
Alamo
yoamore A -
Wrangler ‘ front Desk M Club
Ent /Exit Flevators
Lobby Bar & Restaurant
| Entrance/T xit

We would be grateful if you could move to the track session as quickly as possible.

Notes

Doug Smith

Doulos
Engineer / Instructor

Signing Off with Formal

Gold Sponsor

Abstract

If you have only used formal apps or verified a few properties using modeling checking,
then how do you sign-off on a project using formal just like a simulation-based verification
environment? The answer is a good formal methodology and objective formal coverage. In
this tutorial, we will have a look at both and discuss different types of formal coverage and
how to interpret them.

Biography

Doug Smith is a verification engineer and instructor for Doulos based in the Austin Texas
area with expertise in UVM and formal technologies. He has been using formal technology
for several decades, performing formal verification on many kinds of designs and formal
applications. Likewise, he has provided formal application support at both Jasper and
Mentor/Siemens EDA. At Mentor/Siemens EDA, he served as a formal specialist and
verification consultant, where he provided both formal consulting and developed an
automotive functional safety formal app for performing formal fault campaigns. At Doulos,
he delivers training in verification methodologies like UVM, SystemVerilog, and formal
technology.

Doug holds a masters degree in Computer Engineering from the University of Cincinnati
and a bachelors degree in Physics and Biology from Northern Kentucky University.
Currently, he resides in Paige Texas with his wife and family on a small farm where he
raises bees, cows, horses, chickens, and pigs and loves driving a tractor.

A

leo

DOULOS

/;\ Global

pouos Training Solutions

ESL & Verification Methodology

» SystemVerilog » UVM
» SystemC » TLM-2.0 » Formal

Hardware Design (ASIC / FPGA)

» VHDL » Verilog » SystemVerilog
» Tcl » AMD » Intel FPGA

Embedded Software

» C » C++ » Zephyr » Linux » Yocto » Security
» Arm Cortex A/R/M » Rust » Android

» Edge Al » Deep Learning
» Python | ‘

NEW Course: Advanced Formal Verification

4

Gain a deep, practical knowledge of formal verification

Call +1-888-G0O-DOULOS to discuss your training needs
www.doulos.com

1.\ KnowHGw

DOULOS WEBINARS elivering KnowHow www.doulos.com

Signing-Off with Formal
[AR e . N

[> Strategy and methodology
Formal coverage
Assertion density
Reachability
Mutation coverage
Interpreting coverage

/0\ Sign-off summary

DOULOS

Formal Approaches

DOULOS
Bug Hunting Sign-off
Formal apps End-to-end checks
Formal VIP Reduce compl_exny with
abstraction
e Replace simulation with
Property verification formal sign-off
Goal — CEXs Find deep corner-cases
S Coverage secondary Full coverage
‘ 3
Sign-off Methodology Lo\
DOULOS

Find computes
Budget licenses

il

(Q{') Resources Eﬂ Allocate resources
@ ¥

Validate
constraints

2

. Identify candidates) .
|{: Divide and conquer Verify block interfaces

vs, Describe functionality 9 .
T Prioritize goals Qe End-to-end checking

3 .~ Complexity strategy
Z2C Design reduction P 100% formal
- « & Abstract
v Case-split D74 coverage

4

Prove and bug
hunt

@

Formal Verification Process

DOULOS
> e : (4] 0
<
£ » = 1. v @
= . y . . § y
< Identify Describe Identify Define Define Describe
o Formal End-to-End Important High-level Formal Formal & Coverage
Candidates ~ Functionality Signals Requirements Strategy ~ Goals
Automatic Semi-Auto Protocols & Property Property Coverage
c Apps Apps Interfaces Development Verification & Refinement
S
g 3 9 ¢ Regressions I
=
< /
= Lint cpc AMBA SVA Proofs Reachability
K] Auto Checks Registers AXI Bounded Proofs col
[=3 Unreachability ~ Connectivity FVIP Covers Proof Core
E X-Check SEC Inconclusives Mutation
[ypical Fiow >
Post-Silicon Sign-off
) Debug ECOs ign-of
=
7]
g G & O
B O
Recreate Scenarios Rerun Regressions 100% Coverage

Formal Candidates

Coherency?

N

on-Chip
RAM

SPI

usB

Ethernet

CAN
GPIO

Interfaces |

usB
o |

Safety?

sng esayduad

Formal Throughout a Project

DOULOS

l Block Level

1= FVIP/SVA _ Bug Hunt/ Proof
2 :—/i' FVIP/SVA_ Bug Hunt/ Proof

FVIP/SVA g Bug Hunt/ Proof

%
EA

Formal Verification
Process

Close

Implement

Sub-System

Apps FVIP / SVA Bug Hunt / Proof

g Full Chip / System

Strategy and methodology
Formal coverage
Assertion density
Reachability

Mutation coverage

Interpreting coverage

Sign-off summary
DOULOS

L
|
= I Start Time Sign-off
Signing-Off with Formal
I AR, e S N

Formal Coverage Goals

DOULOS
Assertion precondition coverage — 100%
Functional coverage — 100% cover properties / covergroups
Assertion coverage — 100% at required proof depth
2 Code coverage — 100% line / condition / etc.
9

Types of Formal Coverage

Assertion density (cone-of-influence)

Assertion coverage (proof core)
Functional coverage — cover properties / covergroups
Unreachability
Identifies dead code
Reveals overconstraining
Generate coverage exclusions for simulation
Reachability
Code coverage — statement / branch / FSM / toggle / etc.
Bounded reachability — proof bound / target for abstraction

Mutation coverage — quality of assertions and constraints

DOULOS

Coverage — Known By Many Names

INESS G Proof Core Mutation Reachability
Influence

Assertion or
property density
Stimulus
coverage X
Checker
coverage % % %
Observability X
coverage
Bounded
¢ coverage % % X
z Over-constraint
coverage % X
Sign-off X X %
coverage (some tools) (some tools)

DOULOS

1

Signing-Off with Formal
ety e . N
Strategy and methodology
Formal coverage
ﬁ> Assertion density
Reachability
Mutation coverage
Interpreting coverage

/0\ Sign-off summary

12

always @ (posedge clock)
if (reset)
q <= 0;

else if (ena)
q <= a;

else if (enb)
q <= b;

a_enb: assert property (@ (p

always @ (posedge clock)

begin
sig <= inl & in2;
out <= sig | in3;
end

Assertion Density — Cone of Influence

bsedge clock) disable iff (reset)

ena |=> q == $past(a)|) ;

‘ Does not require formal proof to run

DOULOS

Assertion Density — All Assertions

Property Density (Structural)

Design: foo
% Total Asserts - 1
Total Covers - 0
Total Registers - 3
Total Primary Inputs - 9
Total Primary Outputs - 2
Uncovered Registers (Asserts) - 2
Assertion Density (Registers) - 33.33%
Uncovered Primary Inputs (Asserts) - 3
Assertion Density (PI) - 66.67%
Uncovered Primary Outputs (Asserts) - 1
Assertion Density (PO} - 50.00%

Cone of
Influence

Properties

Registers — 33%
Primary Inputs — 66%
Primary Outputs — 50%

14

Line Coverage 3/5
Toggle Coverage 7/12

Assertion Density — By Coverage ltems

DOULOS

Cone of
Influence

Properties

Farmal Statemant Local Coverage : 3/5 (60.00%) Stimul

Summary__Detalled

Formal Toggle Local Covarage : 7712 (58,33%) Stimul Toggle Local Covaray

B £ & € ¥ 3 | Module for foo
Nama 7 [Totalcrs_[Formal j El 3Tvays elposedge clock)
clock 1 . 11 (10 g ir- e
o ! M. 11 (10c 6 alse if (ana)
out 1 071 (0.0¢ 7 - &
et 1 0 nocs 8 else 1f (anb)
Ll ;r‘ 9 -
fotal 12 [ilteredi 12 [Selected O 3%
Sow il 12 a_enb: assert property (@(posedge clock) disable iff (r
- 13

Checke: 7 | Source Location 7 | Signal Name 7 msesuwasslnﬂ (5] BT logic

G2 - 15
Cl (118)41.23) clock clock ##1 clo e P alasadiae Finels
] (1.31)41.36) reset ireset 221 res: 17 begin
=l (1.51)41.52) q lqeel q 18 19 < & an2

GO ™ in) we1 int i 19 ut <= sig | 4

< 3 20 ond
[Total: 12 L d: [Selected 0 4l I

Add Another Assertion

always @ (posedge clock)
if (reset)
q<=0;
else if (ena)
q <= a;
else if (enb)
q <=Db;

a_enb: assert property (@(posedge clock) disable iff (reset)

ena |=> q == $past(a)) ;

always @ (posedge clock)

begin
sig <= inl & in2;
out <= sig | in3;
end

a_out: assert property (@(posedge clock) ##1 out == $past(sig | in3));

16

Revised Assertion Density Repert

Design: foo

= Total Asserts - 2 Cone of
Total Covers - 0
Tatal Registers - 3 Influence

Total Primary Inputs - 9

Total Primary Outputs - 2

Uncovered Registers (Asserts) - 0
ssertion Density (Registers) - 100.00%

Uncovered Primary Inputs (Asserts) - 0
[Rssertion Den(!EI (nt. 100.00%
Uncovered Primary Outputs (Asserts) - 0

Assertion Density (PO) - 100.00%

-
[Stmud 7 | Saurce Locata ¥ [Evpression il Cr I
et T 2
7. (-reset & ena) 1
I-reset 6 ~ena & erd) 1
5

b

H B e 1t prparty ¢ Ofpionie k) dinable £10 {ravet) snn fon § om SpRt(8) .

g 2

c 1

G i eoseize

g i

2 Bg & cmiw

[1 bt E
B
o

4 al E 5 a0t smaart pesparty @ipssadge <Lark) el oxt s fpt(sig | 1) o

— o] o]

Enough Assertions Really?

always @ (posedge clock)
if (reset)
q<=0;
else if (ena)

a_enb: assert property (@(posedge clock) disable iff (reset)
ena |=> q == $past(a)) ;

always @ (posedge clock)
g begin

sig <= inl & in2;

out <= sig | in3;

end

a_out: assert property (@(posedge clock) ##1 out == $past(sig | in3));

4 Doulos

Instead, compute the formal core

Formal Core

Cone of

Run proof before computing formal core Influence

Computing formal core is CPU intensive

Works for proofs and bounded proofs

45 (80.00%) [sge e 0 selected Tos|
o I i | 8 |Modilsforfoo [“Seiected makiay] v
Source Locatit ¥ | Expression + [Bound Engne STvays 8(poseage cloch) =
o [Easae et 1 PRE A (reset) Suchicing £ Waleac
2 7914706 [(~reset & enal 1 " L g —
(9.9)48.16) |(~reset & ~ena & enb) |1 0 3 %= 2
1 PRE else if (o)
1 PRE il
o: assert property (@(posedge clock) disable iff (resst) ens
ogic 51
always @lposedge clock) -
begin
539 <= inl 6 in2:
el
and &
cted 0] 2f

More Formal Core Results

Formal Core

+ Properties: 2/2 c P
= Formal Core one of
= Registers:
tHock {2] Influence
out

Formal core

reset
Canstraints: 0/0

Observable

Branch 4 [¢] 4 (100.0%)

Condition e ¢} 0 (NA)
& Expression 4 3 1 (25.8%)
5 FSM State (] [°] 0 (NA)
H FSM Transition] ¢} @ (NA)

Statement 5 1 4 (80.0%)

Toggle 24 6 18 (75.0%)

Covergroup Bin 0 0 0 (N/A
g Total 37 10 27 |(73.0%)

20

Rty e . N

Signing-Off with Formal

Strategy and methodology
Formal coverage
Assertion density
Reachability

Mutation coverage
Interpreting coverage

Sign-off summary

21

module simpleuart (input clk, input resetn,

output ser_tx, input ser_rx,
<)

always @(posedge clk) begin Line or statement
if (reg_div_we) Branch
send_dummy <= 1; q
send_divent <= send_divent + 1; Expression /
if (!resetn) begin Condition
send pattern <= ~0; FSM States

send bitent < FSM Transitions
send_divent <= 0;
Toggle

send_dummy <= 1;
end else begin
if (send_dummy && !send bitcnt) begin
send_pattern <= ~0;
send bitent <= 15;
send_divent <= 0;
send_dummy <= 0;
end else ...

22

09
ﬁm
111
112
113
114
115
116
117

module simpleuart (input clk, input resetn,

output ser_tx, input ser_rx,
<)

always @ (posedge clk) begin

if (reg_div_we) lineno = 110;
send_dummy <= 1; lineno = 111;
send divent <= send_divent + 1; lineno = 112;

if ('resetn) begin
send pattern <=
send_bitent <
send_divent <= 0;

send dummy <= 1;
end else begin
if (send dummy && !send bitcnt) begin
send_pattern <= ~0;
send bitent <= 15;
send_divent <= 0;
send_dummy <= 0; Line/statement reachable ‘
end else ...

line_cov_110: cover property (lineno == 110); J
23

begi.

Unreachability

logic [2:0] state;

always @ (posedge clock)

n

if (reset)
state <= 0;
else

case (state)
0:

2: state <= 0; ‘ Line unreachable (Line Coverage) w/ constraint ‘
endcase
prev_a <= a;
end
as_prev_a: assume property (@(posedge clock) prev_a !=b);

: if (a &8 !prev_a)

DOULOS
state =3 unreachable (FSM State Coverage)

state 0->2, 1->0 unreachable (FSM Transition Coverage)

state[2] 0->1, 1->0 unreachable (Toggle Coverage)

if (state == 0)
state <= 1;
else
state <= 2;

‘ Line unreachable (Line Coverage) ‘

state <= 2;

else if (prev_a && b)‘ Condition unreachable (Condition Coverage) w/ constraint ‘
state <= 3;

24

Use Models for Reachability Analysis

DOULOS

Run without constraints — identify dead code

Generate coverage waivers for simulation

Run with constraints — identify impact of constraints

else if (prev_a && b)
state <= 3; <7‘ Line unreachable with constraint

as_prev_a: assume property (@(posedge clock) prev_a !=b);

Bounded coverage — identify areas not reached by bounded proof
25

Reachability Analysis

DOULOS

always @ (posedge clock)
if (reset)
q <= 0;
else if (ena)
q <= a;
else if (enb)
q <=Db;

a_enb: assert property (@(posedge clock) disable iff (reset)
ena |=> q == $past(a)) ;

always @ (posedge clock))
begin Line Coverage 3/5
sig <= inl & in2; Toggle Coverage 7/12

out <= sig | in3;
end

‘ But are there enough assertions? ‘

26

Un/Reachability Coverage

DOULOS

Any items
unreachable due
send bitent <= 15; to input stimulus?

send_divent <=

Inputs if (send_dummy && !'send bitcnt) begin
send pattern <= ~0;

Reveals over-
constraining

send_dummy <=

end else ...
Cover Type Total Unreachable Reachable
Branch 35 35 35 (100.0%)
Condition 4 4 4 (100.0%)
Expression 2 2 2 (100.0%)
FSM State [0 0 (0.0%)
FSM Transition 0 0 0 (0.0%)
Statement 37 37 37 (100.0%)
Toggle 542 460 457 (84.9%)
Covergroup Bin 0 0 25 (0.0%)

Also known as: H Stimulus coverage H Over-constraint coverage ‘

27

Coverage — The Story So Far ...

DOULOS

Simulation coverage — measure the quality of the simulation vectors [Test bench]
Cover property — prove that a specific property holds at least once [RTL/constraints]
Cone of Influence — measure assertion density (quick-and-dirty) [Assert/cover]
Formal core — measure property density (more realistic) [Assert/cover]
Un/Reachability analysis (unconstrained) — identify dead code [RTL]
Un/Reachability analysis (constrained) — identify over-constraint [Constraints]

Bounded unreachability analysis

28

Bounded Un/Reachability Coverage

DOULOS

What can be reached within a bounded analysis?

Inputs if (send dummy && !send bitcnt) begin
I send pattern <= ~0;
send bitent <= 15;
I L send_divent <= 0;
N send_dummy <= 0;
end else ...

Line# ~ Coverage Type Result Details
H123 Statement send_dummy <= 0;
€ 125 Branch ?28 (#1) if (reg_dat_we && Isend_bitcnt) begin
5129 Statement 2028 S emn <= {1'b1, reg_dat_di[7:0], 100);
8134 Statement ?/28 send_bitcnt < 3
B136 Statement ?128 send_divent <= 0;
@ 138 Condition w3 (#1: {(| (send_divent > cfg_divider) && (| ..
£ 138 Branch w3 (#1) if (send_divent > cfg_divider && send_bitcnt) begin
8139 Statement wi3 send_pattern <= {1'b1, send_pattern[9:1]};
B 140 Statement w3 send_bitent <= send_bitcnt - 1;
8141 Statement w3 send_divent <= 0;

: h
g Deptt 29

Signing-Off with Formal
LRt e . N
Strategy and methodology
Formal coverage
Assertion density
Reachability
ﬁ> Mutation coverage
Interpreting coverage

/0\ Sign-off summary

DOULOS
30

RTL Fault Injection

Mutated RTL
Detected)
aSSl‘lme (assertion fails) Non-activated asslert
l !

v

v v

v

v v

v
5 v

v

i v
H Non-detected
g (no assertions fail) a1

RTL Mutations

Inject RTL faults by:

Breaking connectivity (creates a free variable)

Forcing variable to a constant (stuck-at 0/1)

Forcing variable to inverted value (stuck-at negative)

Forcing execution of a conditional branch (stuck-at 0/1)
2 Changing OR to AND (functional fault)

Swapping operands in an expression (functional fault)

Running Mutation Coverage

1. First achieve 100% assertion, COI, and reachability coverage

2. Run unmutated RTL with formal testbench as sanity check

3. Run mutation coverage (exclude faults detected by simulation)

Fault outside COI of any assert => write more assertions or waive
Fault undetected => write more assertions or waive

Fault detected by causing assertion to fail => okay

33

Signing-Off with Formal

Strategy and methodology
Formal coverage
Assertion density
Reachability

Mutation coverage

» Interpreting coverage

[0\ Sign-off summary

34

Cover Properties

[%]
[. .
F= o Covers - overconstrained Underconstrained
= Failing N
L Asserts - underconstrained Bugs
o
a
h=d .
Overconstrained
2 ver Goall f
2 Missing asserts

COl / Proof Core

Un/Reachability (Stimulus Coverage)

% Need more assertions .

5 Low Overconstrained Need more assertions
3 Dead code

o

y

$

E High Overconstrained Goall f

o

52

36

Signing-Off with Formal
[2 AR

Strategy and methodology
Formal coverage
Assertion density
Reachability

Mutation coverage
Interpreting coverage

{o Sign-off summary
DOULOS

37

Formal Sign-off Process in Re\/iew

Plan!
Identify formal candidates
Capture requirements
Implement
Apps -> Interfaces -> SVA -> Formal Check -> Bug Hunt -> Regressions
Close
100% properties complete (or bounded)
100% functional coverage (covers and covergroups)
100% assertion density
100% reachability (with review)
100% code coverage (COl/proof core) (with review)

Measure checker quality with mutation coverage

38
»
DOULOS www.doulos.com
o —

SoC Design &
Verification

FPGA & Hardware
Design

Embedded Software

Python & Deep Learning ¢

» SystemVerilog » UVM » Formal
» SystemC » TLM-2.0

» VHDL » Verilog » SystemVerilog
» Tcl » Xilinx » Intel FPGA (Altera)

» Emb C/C++ » Emb Linux
» Yocto » RTOS » Security » Arm

~ -
Sysorverion ' UVM Frarowe
L

Q&A

Any questions?

A

DOULOS

40

Track Session

UVM for AMS Verification
Lonestar Ballroom — Salon D

FLOOR PLAN

Magnol
Bluebonnet
| one Star Salon D
Ballroom
Longhe
7777777777 E
Stairs 5
Salon A SalenB lan ¢ €
c
5
Capitol a
Sycamore B apitol
B _‘)Y_' amore | Al +—B wess Center Prefunction Area
MO
s A]
S Wrang Jler ‘ | tDesk M Club
Ent /it Flevators
| obby Bar & Restaurant
| [ntrance/T xit

We would be grateful if you could move to the track session as quickly as possible

Notes

Peter Grove & Steven Holloway

Renesas
Distinguished Member of Technical Staff
Senior Member of Technical Staff

Mixed-Signal Randomisation - Stimulus and Checkers

User Paper (Remote presentation)

Abstract

Constrained-random verification (CRV) is a well-established and successful methodology
for digital designs and UVM has become the primary means to achieve this.

The functional complexity in mixed-signal designs is increasing exponentially. Even a simple
Power Management Unit can have hundreds or thousands of control bits and many modes
of operation. To achieve good functional coverage, it is important to adopt a CRV approach
for mixed-signal designs. This approach can help us manage a large verification space,
including: checking analogue performance under a large set of programmable
configurations; digital control system interaction with analogue circuits; covering
unexpected corner cases in A/D interaction. To lower the bar for verification engineers to
switch Device-Under-Test (DUT) abstractions between DMS and AMS a generic monitor
will be presented. This monitor is agnostic to the DUT abstraction so the Verification
engineer can work in the environment they are most comfortable in.

This presentation shows some of the ways in which Renesas has applied UVM to mixed-
signal designs and some of the benefits we gained by doing so. The work presented was
the driving force in defining the UVM-MS standard.

Biography

Peter has worked in the industry starting back in 2001 when he joined a small company
called Wolfson MicroElectronics, where he was project lead for more than 15 production
devices. Since then, Peter has only worked at one other company, Nujira, before joining
Dialog (now Renesas) at their Edinburgh office. Peter has been with Dialog since 2014.
Peter’s background has been main digital design, but has over the years taken charge of
many large mixed signal devices that are in volume production and been exposed to
enough analogue design work to appreciate the issues they face in verification.

ENESANS

Peter’s background has been main digital design, but has over the years taken charge of
many large mixed signal devices that are in volume production and been exposed to
enough analogue design work to appreciate the issues they face in verification.

Peter has an eye for looking for ways in which techniques can be done to improve chip
level coverage, simulation runtime improvement to name a few. Peter is also in a unique
position that during his days at Wolfson he was a key player in defining their
schematic/Layout tool set with integrated revision control. This has allowed Peter to
gather many skills not just in design work but in all the backend flows and EDA tools,
understanding different netlist types and how the tools work.

Peter’s technical interests are mixed signal and analogue verification methodologies,
design flows. Peter also is an Acellera SystemVerilog-AMS committee chair, UVM-AMS
member/key contributor making sure the ‘users’ feedback on the language is considered
and not what the vendors just want to support.

Steve has 24 years’ experience of digital verification including eRM, OVM, UVM and formal
property checking. He has led the verification of large-scale consumer SoC projects. He
joined Dialog Semiconductor in 2011 and previously worked for Doulos, NXP and Trident
Microsystems. Steve has presented at multiple external conferences including a panel
session at DVCon US. He participates in industry standards bodies and has contributed
code to the Accellera UVM-AMS working group

MIXED-SIGNAL RANDOMISATION
STIMULUS AND CHECKERS

METRIC DRIVEN MIXED SIGNAL
VERIFICATION (DMS/AMS)

STEVE HOLLOWAY, RENESAS, SEPTEMBER 2024
PETERGROVE, ~ RENESAS, SEPTEMBER 2024

KEYWORDS: AMS, DMS, DV, VERIFICATION, UVM, UVM-MS

AGENDA

=Directed and Constrained Random Verification
= A Verification Example

= A Metric Driven Mindset

=Generic V / I Monitor for Mixed Signal Designs
=UVM for Mixed Signal (UVM-MS)

=Conclusion

e RENESAS

2024 Rensas Eecronis Corporaon Al ighsresrved Page2

[Pt

DIRECTED TESTING

Stimulus Response
0110110110 0110110110
0000100000 0000100000
1000101001 1000101001
0110110101 DuT 0110110101 v
0110101000 0110101000
0110101011 0110101011
Expected response —
0110110110
0000100000
1000101001
- 0110110101
0110101000
Identify all scenarios required to check expected functionality 0110101011

Create (large) suite of procedural tests

Completeness from pass/fail status and code coverage e

By definition unexpected scenarios are not covered — a large hole in coverage

e RENESAS

2024 Rensas Ecronis Corporaon Al ighsresrved Page3

CONSTRAINED RANDOM TESTING

Constrained-random stimulus

Randomly
vectors

generated
stimulus

Checker

Response Automatically checked DUT

Cnrmantan response

¢ (0110110110
3 0000100000

(e1initaTan
¢ 0110110110

1 0000100000 Functional Coverage is the measure

« « . .
@ © SR g © SRR of verification completeness
P 0110110101 ¢ 0110110101
¢ 0110101000 ¢ 0110101000 Stimulus, Checking, Coverage are —|
0110101011 0110101011 PGO
separate]

Automated Test-bench ~ UVM is not a prerequisite

e A ENESAS

2024 Roness Elcroncs Crparation Al ghs seres. Paged

DIRECTED AND CONSTRAINED RANDOM VERIFICATION ?‘; _

,, 100%
Constrained !

Random 3 Directed

Approach ; Approach
Percentage of i
Functionality .
Tested :
i
i

i Time Savings
Source i
LI —— Pages s e aRENES/AS

THREE PILLARS OF METRIC-DRIVEN VERIFICATION &

All three pillars are separate concerns

STIMULUS CHECKING COVERAGE

exercise the design automatically measure the

in ways we may not check expected verification
have thought about design behaviour completeness
2024 RS Coperston Mg s, Pages s s ENESAS

A VERIFICATION EXAMPLE ?: ;

o024 e

RENESAS

p— Page?

MIXED SIGNAL EXAMPLE 1=
= Our example system has 2 x DCDC and 4 x LDO’s -—

= LDO range 0.9V...2.5V in steps of 50mV. (32 steps)
= DCDC range 1.2V...4.4V in steps of 100mV. (32 steps) 1 itz

= Any DCDC can supply 1 or more LDO’s.

==
= AllDCDC's and LDO’s will be started during boot process.
=]

= DCDC will always be at least 200mV above the highest 1

= Startup order requires DCDC to be started before LDO’s it

supplies (16 Slots).

= LDO Voltage could be anything within their range. L—

[—— Pages s e nRENES/AS

VERIFICATION SPACE

T =

4 xLDO 24
2xDCDC 10
Slot Sequencer 48
Total 82

This represents 282 combinations
Even checking each setting at 100MHz takes 1.5 x 10° years !l

We need to forget about exhaustive (directed) testing

02024 Ransss Echonis Corporaton Al i s Paged

CONSTRAINED RANDOM

Use a “spray and pray” approach to bug finding and hope
you get lucky:

Use CPU horsepower to generate random test scenarios

fpGo

Guide the automation based on your knowledge of the
design to target areas of risk

Measure the scenarios that are hit by creating a functional
coverage model

Random

Constraint Stimulus

number
Solver 5 Values
generator

samnc: A UENESAS

@204 Rensas Ecronis Corporaon Al ighsesrved Page 10

TEST RANDOMIZATION FLOW

randomize

(|
Con(; ."g;“on | % o » BCSEENEN 56 MPH

Cruise Speed (MPH)

Clita - Run Test
Configuration Configuration

Speed == 56 MPH +/- 10% Cruise = 56MPH Ramp speed
until stable
s s Copron s e Page 1 s sRENESAS

MODELLING RAIL CONFIGURATION sys_cfg

class rail cfg extends uvm object;
- - rail_cfg
int unsigned id; // rail id
rand int unsigned supply; // rail supplying this ome = Composition
rand int unsigned vsel; // voltage selection
rand int unsigned slot; // slot selection

constraint c_vsel_range { vsel inside {[0:311}; }
constraint c_slot_range { slot inside {[0:15]}; }

endclass: rail_cfg

class sys_cfg extends uvm_object;
rand int unsigned num rails; // rails in the system
rand rail_cf rails[]; // array of rail objects
always create right array size -conut:aint c_rail array size { rails.size() == num_rails; }

endclass: sys_cfg

52024 R Ectonics Gorporaton Al i esrved Page 12

s aRENESAS

HOW TO GUIDE RANDOMISATION?

[SYS] DCDC 1 Vsel = 2.40v.
[SYS] DCDC 2 Vsel = 2.60v
[SYS] Rail 1 Supply DCDC2 Headroom

[SYS] Rail 2 Supply DCDC1 .45v Headroom
[SYS] Rail 3 Supply DCDC2 . Headroom
[SYS] Rail 4 Supply DCDC2 Headroom

function void post_randomize;
foreach (rails[i]) begin
rails[i] = new();
rails[i].id = i;
assert (rails[i].randomize() with {
// Supply must be set before solving vsel
solve rails[i].supply before rails[i].vsel;
// Constraints for LDO rails[2:] - supply from DCDC[1:2]
rails[i].id > 1 -> rails[i].supply inside {[0:1]};
// vsel < supply.vsel + 2 (supply-200mV)
rails[i].id > 1 -> rails[i].vsel < rails[rails[i].supply].vsel + 2;
// schedule after slot from which it is supplied
rails[i].id > 1 -> rails[i].slot > rails[rails[i].supply].slot; });
end
endfunction

Page 13 sosr e A RENESMAS

WHAT ABOUT REAL NUMBERS? e

IEEE 1800-2023:
“The solver can randomize singular variables of any integral or real type”
Random real values are uniformly distributed over their range. For example:

rand real v;
constraint c {v > 0.0 && v < 2.0;}

The probability of choosing a value in the range 0.0 to 1.0 is the same as the
probability of choosing a real value in the range 1.0 to 2.0.

Areal is a 64-bit number so some sensible clamping on significant figure is needed

(' (real_var/le-6)*le-6) //Clamp to lu significant figure

2024 Ranesas vt CoporationAllihs sered. Page 14 s 1 UENES/AS

REAL CONSTRAINTS

o

class real_config_c; constraint a_constraint {
const int ZSTATE = -100; a dist { ZSTATE &= 5y
const real VALUE_LOW = 0.70; [VALUE_LOW: VALUE_MIN] & A,
const real VALUE MIN = 1.43; [VALUE_NOM-0.03:VALUE_NOM+0.03]:/ 13,
const real VALUE_NOM = 3.30; [VALUE_MIN:VALUE_MAX] /1

const real VALUE MAX = 3.65; Y
rand raal a;)
rand real b;
endclass
constraint b_constraint {
(a inside [VALUE_LOW:VALUE_MIN])-> b == ZSTATE;
b dist { ZSTATE ES
[VALUE_MIN:VALUE_MAX] :/ 20

solve a before b;

Page 15 o s RENES/AS

REAL COVERAGE e
1
— —
—
« Arange of real values is different from a range of integral values. —_
« Itallows all possible values within the specified range =
-
+ e.g. VALUE_LOW > a > VALUE_MAX =
« The covergroup option real_interval defines partitioning for a range of bins lg
=
« Asingle-value real bin can fail to cover numbers very close to the bin value, =
because a real number representation has limited precision 12
-

covergroup cg; e

type_option.real_interval = 0.1; =
cp_a:coverpoint a { f—
bins Z = {real' (ZSTATE)}; —
bins RANGE[] = { [VALUE_LOW:VALUE_MAX] } ; _
} —
—
endgroup =
=

2024 Raesas Etons Coporaton Allihs e Page 16 s 1 UENES/AS

VERIFICATION METRICS &

= Constrained-random can cover more verification space by running 'f;o\ny seeds
= Create a metrics model based on spec features, design knowledge, etc.

= Pairwise crosses between features are a useful strategy

i = Je = o
L} =]
=
[-— 5
- w00 = 1
= s — 575
= 100 = =
— 0o me e '
—_ oo m
et ot med wmmme
L} N
Page sosr e A RENESMAS

BUT AMS SIMULATIONS CAN BE VERY SLOW! -ﬂ)
Run regression suite with DMS models and checkers)
Rank tests by contribution to functional coverage

Run the best seeds on AMS I

Works well with a Unifed TestBench for DMS/AMS!
https://www.youtube.com/watch?v=lwnRXwR4whM

N\
£ F aws

[— Pago 18 s 8 UENES/AS
g
‘\i 9,
GENERIC CONCURRENT V /1 MONITOR '
FOR MIXED SIGNAL DESIGNS
(AMS OR DMS)
T ——— Pago 19 s A RUENESAS

PROBLEM STATEMENT AND REQUIREMENTS 53

= Ability to monitor internal nodes in the design which based on netlist configuration (HED) could change abstraction
= In one HED configuration the node resolves to a Real, in another UDN and in another Electrical
= Node may not exist in some HED configurations!
= Effects of node can't easily be monitored on DUT IO's. (E.g. Internal bias currents/references)

= Monitor Voltage, Port Current or Port/Block Power.

= Requirements (Wish list)
= No elaboration error if the path does not exist. Use a string as a path to a scalar node/port.
= Work’s in DMS/AMS without user interaction.
= Ability to change trigger levels during the simulation
= Dynamically enable/disable the monitor during the simulation.
= Limit simulation overhead.

= Could be used for UPF supply monitoring thus works in DMS/AMS without user interaction or vendor extensions.

[—— Page 20 s e nRENES/AS

WHY AND WHAT TO MONITOR g

= Automatically enable monitor on internal signals. E.g. Bandgap enable. (Allows concurrent checking for any simulallon.)'
= Noise on some nodes are hard to see unless a catastrophic issue happens, resulting in a verification hole.

= Detect if a circuit kicks a reference when starting up. E.g. Comparator’s capacitive feedback kicks high impedance node.

= Monitor static bias currents to blocks. If a bias goes to 2 blocks by accident it might not be easy to detect in AMS.

= In DMS most of this is not as important, but DMS can be used to setup/debug the monitor in a fraction of the time.

votage
-
node
Jrss——
T
U —— Page21 s e aRENES/AS

-ﬁ 1
OUTLINE OF MODULE(S) AND FLOW L‘.L\iM Q

= Must be a module to access continuous time nodes at every analog timestep.

= Utilized simulator initialization sequencing, $analog_node/port_alias and VPI routines.

= Parameters to set Node, Mode and whether DMS+AMS, DMS only or AMS only.

SystemVerilog-Wrapper

= Hierarchy of 3 modules, with multiple views of Verilog-AMS version. parameter string Node
parameter string Mode=

= Dummy module for DMS netlist (ana_node_ok = 1'b0)

» Verilog-AMS for AMS simulations. Verilog-AMS

ana_node_ok

= Matches UVM-MS proposed standard architecture

= SV Bridge (SV wrapper), instancing API via proxy. SV-DMS

di de_ok
= DUT abstraction for ‘analog resource(s)’ G

204 Rereas Etonies Coporton Alghis s, Page 22 s 1 UENES/AS

SEQUENCE - ALL BEFORE DC OP EVEN ATTEMPTED.

1. Analog initial block(s) executed and checks if node is electrical. ana_node_ok variable set accordingly.
2. Control passed to digital engine what starts processes, triggering initial block(s);

I. Call's function get_ana_node_ok(), which uses up name referencing to call function in wrapper layer that calls the
function in the VAMS module to get the analog owned variable. Creates local copy in wrapper cell.

1. If the return value is 0 then node is not electrical or does not exist. Try DMS using VP! to register Call back

If dig_node_ok is 0 then node does not exist. Depending on AMS only, DMS only or AMS+DMS error.

3. Transient simulation carries on and API can be used to change enable and the thresholds.

Transient

ana_node_ok || #
Simulation

dig_node_ok

Error as
node not
found

Analog

initial Digital initial

[A — Page2s sos e = UENESAS

ANALOG OOMR PROBING g

= Verilog-AMS has $analog_node_alias and $analog_port_alias functions.

= ana_node_ok is a continuous variable, so a discrete function is required to get value from wrapper SV layer.
electrical int node;

function integer get_ana_node ok (input dummy);
gin
Discrete function for

get_ana_node_ok = ana_node_ok;
end

for
readback for ana_node_ok
endfunction

analog initial begin
ana_node_ok = 0;

if (mode ") ana_node_ol g_node_alias(int_node,node) ; Hierarchical connection
if (mode == "flow") ana_node_ol Sanalog port alias(int_node,node) ; based on string node
end —
analog begin o
alue = ana_node ok ? ((mode == "pote ") 2 V(int_node):I(<int_node>)): ;} Probe and monitor
/ c check.

DIGITAL OOMR PROBING 4
—_——— - i;
= SystemVerilog has no $digital_node_alias/$digital_port_alias function. (Vendors don't have a generic version for any netType.) -
= Direct assign via OOMR’s would force Connect Module in AMS or a netType conflict in pure SystemVerilog.
= No native port current probing with SystemVerilog UDN's. Knowledge of UDR required.

“The Importance of Verilog Procedural Interface to Utilize a Single Environment/Testcase for DMSIAMS (Peter Grove” CDNLive 2023 Europe track winner)

= Solution query the simulator at runtime using the Verilog Programming Interface (VPI) to access the data objects

= Make the VP! code unbound to a specific net/variable structure and expandable for other datatypes in the future

= Use a function in SV to call some VPI (Verification Procedural Interface) code.

= VPI code queries the simulator to get the information.

= Can then handle many different use cases but keep SV function the same.

= All LRM compliant.

2004 Raess B Crparson Al s Page25 RENESAS
VPI - SET UDN CHANGE CALLBACK ;

= Imported custom C function dpi_udn_change_callback() to SV as setUDNChangeCallback() using DPI -

= SV function registers a VPI call back when specific object change value.
allback = funceion int dpi_udn_change_callback(input string udn net

import. context dpi_udn_chan .
output string error nig, — Imports C function to SV
)i J

input string sc

(input string udn net, input string error level = | input string scope="");

cope), .debug (205))) begin

= _msg(error msq), .scape

k(.udn_net (udn_net)

s3)

roturn
endtunction

» udn_net —Inputstring to the net to be monitored. (In this case the VPI code only support UDN, but could be extended.)
= error msg — Output string variable to return any error messages from the VPI code.
= scope — Input string that should be Set to «:cznucc¢-.y. Can't be default value as function could be in Package.

And used to set the scope for the call back task.

* setUDNChangeCallback returns O or 1 to indicate a call-back successful or not. Error messages automatically displayed.

RENESAS

2024 Rness s Crparation Al ghs serve. Page26.

VPI - SET UDN CHANGE CALLBACK 5}

_— s
= Custom C function registers a callback (vpi_register_cb) when an objects value changes. V.
= Monitor V field of UDN for Voltage probe, and additionally R field for Current probe, based on specific UDN.
= Callback C function triggered when V or R field changes value, this could be during delta cycles.
= Callback C function calls the SV task function that has been imported to the C layer, using svScope the
dpi_udn_change_callback() was called from
et T
3 e —_
net_h = vpi_handle_by_nans (pach, 7| Handle to UDN and e T
men i iterate (vpimenber, net_h); s+
Viiie Tnanil = voi_seanmanny}) | J _iterator over struct T
“neriiane = vpi
L Build Call-Back struct and
J register it with the simulator.
o))+)
P — Page 2 o s RENES/AS

VPI - SET UDN CHANGE CALLBACK g

- s A3
= Exported SV task update_udn_event() to C. 4
= SV task uses non-blocking event trigger ->>, so multiple changes on the UDN only call the event once.
udn () 7
dpi_udn_change_callback_fn(p_cb_data cb_data_p) (
§ - a® - i Sets scope to call the
svScope scope = svGetScopeFromName (cb_data_p->user_data) ; imported task obtained
pe (scope) ; < B
from user_data field set at
|- dpi_update udn(); -
- - callback generation.
return |;
) C function called by registration to vpi_register_cb
CHSV link
(export " " dpi_update udn = task update udn event;
event node_changed;
task update udn hanged; endtask
always@ (node_
/Get value
end
2014 Rereas Etonies Coporton Al s, Page 28 RENESAS

AMS MONITORING CODE

= Use an integer variable to toggle 0/1

cross not used, use 1ast_crossing to get interpolated crossing time:

= Hysteresis is important to avoid oscillation due to tolerances on the Voltage/Current been monitored

- Use a) function to sample into discrete domain for wrapper SV to probe via OOMR.

= Set delta_expr and time_tol to 0 so a change in value will be picked up unless it toggles faster than time precision

analog begin

Gate process ba ok t PU cyel
if (ana_node_ok &&
value = (mod ") 2 V(int_node):I(<int

if (value > (upper_a + (in t_a ? hys in_range_int_a

else if (value < (lower_a + (in_range_int_a ? -hy a
else in_range_int_a i/
end
else begin
in_range_int_a = 0; //Not OK
end
end
always@(absdelta(in_range_int_a, 1, 0, 0, 1)) in_range_int = in_range_int_a;
2004 Raess B Crparson Al s Page 29 siremon: aUENESAS

DMS MONITORING CODE 1

= Call back will use non-block event on node changed, so it triggers in non-block region of simulation cycle.
= Use VPI routines to get the Voltage and Current but only if enabled as this can be costly.

= Additionally need to check for “wrealXState/ wrealZstate that could be a return value. (Notin LRM but all vendor support)

always@ (node_changed or en or posedge dig_node_ok) begin
if(en && dig_node ok) begin
e ch should

Lerror_level(m
rror_level(Mmi

) ve

oltage (value)
.current (value), .

£ (mode
else

if (iszx(value))
else if (value > upper)
else if (value < lower)
else
end
else in_range_int =
end

RENESAS

2024 Rness s Crparation Al ghs serve. Page 30

)
MONITOR REPORTING ;"'
_— N
= SV wrapper use ana_node_ok and dig_node_ok to monitor the right module. 4

= SV task uses non-blocking event trigger ->>, so multiple changes on the UDN only call the event once.

always begin
if(ana_node_ok) @(u_ams_monitor_core.in_range_i

iff u ams monitor core.en) begin
if(1u_ams_monitor_core.in _range_int) " »

UVM_MEDIUM)

else uvm : ,
end
else if(u_dms_monitor_core.dig_node ok) @(u_dms_monitor
begin
1£(tu_dms_monitor_core.in_rang 8 < »
els m , UVM_MEDIUM)

end
else @(ana_node_ok or u_dns
end

monitor_core.dig_node_ok) ;

s RENESAS

2024 Reness BlcroncsCrparation Al ights resere. Page 31

VERIFICATION METHODOLOGY ﬁ; ;

2020 Reness lcroncs Crparation Al g resered. Page 32 i s UENES/MAS

METRIC DRIVEN MINDSET &

L

Find bugs which almost certainly exist in the design
= Stress protocols — don't just interoperate with them
= Explore corner cases
= Zero tolerance of design inconsistency
Reuse and debug should be considered from the start
= Using a methodology in the right way addresses reuse
= Appropriate and consistent messaging scheme
The right use of metrics
= Test-case pass rate is a “design” mindset

= Coverage closure is the objective, test cases are a
means to get there

= Never collect coverage without checks

s i RENESAS

2024 Reness ElcroncsCrparation Allights resere. Page 33

UVM-MS .
UVM-MS is the standardi of ixed signal for UVM I IVM
-

Y
L&

= Allows UVM to be more mixed-signal aware
= Improved verification of analogue/mixed-signal designs
= Same degree of thoroughness for both analogue and digital parts
Metric-driven verification suits following objectives due to verification space size
* Verifying analogue performance under large set of digital configurations
* Digital control system transitions interacting with analogue functions
= Dynamic control between analogue & digital circuits under wide range of conditions
* Finding problems with A/D interaction in unexpected comer cases
Named UVM-MS as the focus is to support any MS system; DMS, RNM, Spice or a mixture.
Randomisation is not mandatory and benefits are gained even when using directed tests
= Standard methodology
= Plug & play reuse of existing UVM components

* Rich debug & messaging scheme integrated with simulator

s s RENESAS

2024 Rness s Crparation Al ghs serve. Page 34

UVM-MS STATUS Public Draft Released 9" August 2023

Peter and Steve developed the concept

uvm_ms_agent uvm_ms_bridge (SV)

&

* UVM -> UVM-MS differences
+ The uvm_ms_agent send parameter via the proxy to the bridge core. E.g. Phase, Freq for sine wave
« Bridge Core generates the signal.

2024 Reess ki Coprsion Al s s Page 35 sos e = UENESAS

CONCLUSION

+ RENESAS

2024 Rensas EconiesCarporaton A s esared Page 36

CONCLUSION

Constrai dom Verification is applicable for Mixed Signal
designs, if not essential.

+ More effort is required to assemble a Metric-Driven platform
* However, re-use can pay off here
- Fast DMS regression can be used to select seeds for slower AMS

+ Most successful if a Metric Driven Mindset is adopted from the vPlan
onwards

+ The VPI enables a sophisticated concurrent checking system for
“analog’ nt signals whether in DMS or AMS.

* Verification engineers does not need to know the DUT's
abstraction.

+ UVM-MS will drive this capability.

02024 Ransas Ectonis Corporaton Al i esrved. Page 37

Renesas.com

2024 Rensas EcronicsCoporton Al ights esare,

e s RENESAS

Adnan Hamid

Breker Verification Systems
Founder and CTO

RISC-V Certification: Applying Advanced RISC-V Core and
SoC Verification Towards the Anticipated Certification
Requirements

Gold Sponsor

Abstract

RISC-V processor cores are becoming more complex and varied, driving an ever greater
need to prove their quality through advanced verification. RISC-V International has
instigated a new Certification Group to target a quality metric, and this requires a range of
new, automated verification test solutions. Through his work with multiple RISC-V core
providers to extend their verification environments to meet modern processor verification
requirements, the author has a unique perspective towards meeting these certification
requirements. The presentation proposes a range of test “layers” that extend beyond
standard random instruction generation to include system integrity verification. This
presentation will demonstrate a number of these verification capabilities, how they have
improved RISC-V verification, and how they may meet the certification needs of the future.

Biography

Adnan is the founder and CTO of Breker and the inventor of its core technology. Noted as
the father of Portable Stimulus, he has over 20 years of experience in functional
verification automation, much of it spent working in this domain. Prior to Breker, he
managed AMD’s System Logic Division, and also led their verification team to create the
first test case generator providing 100% coverage for an x86-class microprocessor. In
addition, Adnan spent several years at Cadence Design Systems and served as the subject
matter expert in system-level verification, developing solutions for Texas Instruments,
Siemens/Infineon, Motorola/Freescale, and General Motors. Adnan holds twelve patents
in test case generation and synthesis. He received BS degrees in Electrical Engineering and
Computer Science from Princeton University, and an MBA from the University of Texas at
Austin.

45 BREKER"

I

C++ Virtual
Platform

SoC Integrity
SystemVIP

High Coverage,
Automated Apps

i

IP Block
Simulation

Subsystem
Simulation

IP. End-to-End
Test Content

SystemUVM Scalable,
Portable Test Content

RISC-V CoreAssurance SystemVIP

MERISGCN~

pP Core
Verification

SoC Simulation
or Emulation

RISC-V Core
& SoC Integrity

Comprehensive Toolkits

for Stringent Testing

Random Instructions

Do instructions yield correct results

Register/Register Hazards

Pipeline perturbations dues to register conflicts

Load/Store Integrity

Memory conflict patterns

Conditionals and Branches

Pipeline perturbations from synchronous PC change

Exceptions

Jumping to and returning from ISR

Asynchronous Interrupts

Pipeline perturbations from asynchronous PC change

Privilege Level Switching

Context switching

Core Security

Register and Memory protection by privilege level

Core Paging/MMU

Memory virtualization and TLB operation

Sleep/Wakeup

State retention across WFI

Voltage/Freq Scaling

Operation at different clock ratios

Core Coherency

Caches, evictions and snoops

RISC-V SoCReady SystemVIP

srrpTsyeeryTey

Prototyping/
Post-Silicon

System & SW
Validation

Firmware Test,
Performance Profiling

BREKER"

SystemVIP with
Test Synthesis Amplification

Pre-packaged test availability

Quality SystemVIP, broad test suites

Random Memory Tests

Test Cores/Fabrics/Memory controllers

Random Register Tests

Read/write test to all uncore registers

System Interrupts

Randomized interrupts through CLINT

Multi-core Execution

Concurrent operations on fabric and memory

Memory Ordering

For weakly order memory protocols

Atomic Operation

Across all memory types

System Coherency

Cover all cache transitions, evictions, snoops

System Paging/IOMMU

System memory virtualization

System Security

Register and Memory protection across system

Power Management

System wide sleep/wakeup and voltage/freq scaling

Packet Generation

Generating networking packets for 1/0 testing

Interface Testing

Analyzing coherent interfaces including CXL & UCle

SoC Profiling

Layering concurrent tests to check operation under stress

Firmware-First

Executing SW on block or sub-system without processor

www.brekersystems.com

info@brekers

Ultrahigh coverage & bug hunting

Auto bug tracking for complex scenarios

Portable & Reusable
Same tests across platforms and projects

* Cache-System Coherency
* Arm SoCReady

* RISC-V SoCReady

* RISC-V CoreAssurance

* Power Management

* Security

* Networking & Interfacing

BREKER"
Advanced RISC-V Core and SoC Verification
Towards the Anticipated Certification Requirements

Verification Futures Austin 2024
Adnan Hamid

A Look At RISC-V

e Open Instruction Set Architecture (ISA) gaining significant traction in
multiple applications

BREKER"

o Significant verification challenges
o Arm spends $150M per year on 10%° verification cycles per core
o Hard for RISC-V development group to achieve this same quality
o Lots of applications expands verification requirements
o Requires automation, reuse and new thinking
e RISC-V International developing certification program to provide an
assurance metric for RISC-V devices

b RISC-V°

RISC-V International Certification
BREKER"

Certificate Demand]

e RVI Certification Steering Committee (CSC) recently formed with the intent of
increasing industry confidence in certified RISC-V cores and IP

o Considered important as RISC-V gains in popularity
e CSC now working on test sources, process plans, etc.
o May look to commercial entities to provide rigorous certification tests

o Breker involved as our SystemVIPs are aligned with potential CSC tests

© Breker Verification Systems,Inc. Al rights reserved. Breker Systems Confidential 3

Meeting RISC-V Verification Challenges BREKER"
e Reuse & automation to meet quality expectation Suggested RISC-V verification “stack”
o Automated test generation key ‘ Performance/power profiling

. g . .
RISC-V special requirements ‘ SW Execution, 05 Boot

o Custom instruction verification
o Compliance assurance ‘ System integration integrity

o Broad range of architectures 3
s
o Different processors have different needs §
Micro-architecture functionality
o Embedded cores

o Application processors

|
|
|
‘ Core operation integrity ‘
|
|
Up & running “Hello World” ‘

o Processor clusters ‘ ISA architectural compliance

Different Challenges for
Core vs SoC Verification

BREKER"

=) w F

RISC-V SoC Verification Cl

RISC-V Core Verification CI

System Coheres Coverall cache transitions, evictions, snoops
Vield correct results ; :
Hazards | Pipeline perturbat s to register conflicts Register and Memory protection across system
patterns 7 i
Pipeline i synchronous PC change Generating networking packets for 1/0 testing
Exceptions Jumping to and returning from ISR Interface Testing Analyzing coherent interfaces including CXL & UCle.
Pipeline perturbations from asynchronous PC change Random Memory Tests | Test Cores/Fabrics/Memory controllers across DDR,
i OCRAM, FLASH etc
Register vor v Random Register Tests | Read/write test to all uncore registers
TLB operation Randomized interrupts through CLINT
Sleep/Wakeup State retention across WFI i i < d memory.
ratios Memory Ordering For weakly order memory protocols
Core Coherency Caches, evictions and snoops. Atomic Operation Across all memory types

© Breker Verif

tion Systems,Inc. Al rights reserved.

Breker Background: .
Test Suite Synthesis for RISC-V Cores & SoCs BREKER

e Breker is a key, longstanding part of the verification ecosystem
for processors and SoCs based on x86 and Arm architectures

e Breker has become part of the verification ecosystem for
processors and SoCs based on RISC-V architectures

o Working with multiple RISC-V developers and users/integrators

e RISC-V has room to grow if we solve the verification barrier

© We are experienced in x86 and Arm verification, now are sharing
this experience with RISC-V teams through automated tests

The Breker SystemVIP Library
+ Core Integrity FastApps
* RISC-V System Integrity TrekApp
« ARM System Intearity TrekApp
+ Cache Coherency TrekApp 2.0
« Firmware-First TrekApp
+ Power Management TrekApp
« Security TrekApp
« Networking TrekApp

Verification Systems,Inc. Al ights reserved.

Constrained Random vs Al Planning Algorithm Synthesis)
BREKER

Constrained Random Generation Al Planning Algorithm
UVM SV & other PSS tools

states,

Breker Test Suite Synthesis

states,

T L e e e Jcycles 4

/ cycles
Design black box, shotgun tests to search for key state Starts with key state and intelligently works backward through space
Low probability of finding complex bug Deep sequential, optimized test discovers complex corner-cases

© Breker Verification Systems,Inc. Al rights reserved.

Crossing RISC-V Core Verification Components . A

Test sets of different types

testc thm rediction Ins ions. MMU P Addre

Tests crossed together

False Share
Cachel

Inds
Hashes. =
rid
Patterns

D Tree walked to produce
comprehensive test sets

© Breker Verification Systems, Inc. Allrights reserved.

Concurrent Test Execution ERﬂEER‘

Memory Memory
Region 1 Region 2

test_cpul.c test_cpul.c test_cpud.c

Memory
Region 3

High Coverage and Bug Hunting

BREKER"
Recent examples of bugs discovered in real designs SystemVIP Test Suite Synthesis Coverage Comparison
Al RISC-V spec misunderstanding between core vendor and user Typical directed coherency coverage

ik Coherent Mesh Network (CMN) programming issues

i Misconfigured ARM CMN pin to enable coherent traffic 5=

4 DDR model unable to handle AXI "wrap" transactions. B 1l

Al Common cache line access reveals deadlock :l ol | l‘ || ll || l
4 Custom instruction bugs discovered by stress tests = 8 Ii,!i “ Iljl | Ll I tl i
A Results mismatch with ultrawide address strides))

... vs. Breker automated coherency tests
4 Incorrect exception for guest virtual address[63:38] = Ox1ffffff -

4 Bad mcause value for guest physical address[63:31] I= 0x0

© Breker Verification Systems, Inc. Allrights reserved.

Core-Integrity Challenges

BREKER"
Random Instructions Do instructions yield correct results
Register/Register Hazards Pipeline perturbations dues to register conflicts
Load/Store Integrity Memory conflict patterns
Conditi and Branch: Pipeline perturbations from synchronous PC change
Exceptions Jumping to and returning from ISR
Asynchronous Interrupts Pipeline perturbations from asynchronous PC change
Privilege Level Switching Context switching
Core Security Register and Memory protection by privilege level
Core Paging/MMU Memory virtualization and TLB operatiol
Sleep/Wakeup State retention across WFI
Voltage/Freq Scaling Operation at different clock ratios
Core Coherency Caches, evictions and snoops
Breker Verification Systems, Inc. Allrghts reserved. n
RV64 Core Instruction Generation BREKER

hart0o

TO0
asminstrs.1

r instructions

Instruction Coverage Analysis

27/103 reachable
opcode have been
/ exercised

BREKER"

Atomics, loads and
stores not reachable
in register only test

T
I

RV64 Core Load/Store

BREKER"

write addrs

RV64 Core Exception Testing

hart0

TO
installinterruptHand|ers. 1y
sendinterrupt.2
sendinterrupt 1
sendinterrupt 4
chackinterruptCount. 1

BREKER"

Generates for
asm("UNIMP"

example,

)

:| Check exception counts

Page Based Virtual Memory Tests

Ker Verification Systems, Inc. All ights reserved.

BREKER"

RV64 Core Page Based MMU Tests
= BREKER"
B Swap MMU PTE’s and
— Check memory access
Core-Integrity: Single Core, 4 Threads
BREKER"

Tests utilizes processor’s available resources/software threads

Memory Values

- Memo B8

dochack.9 trek_ses_ddrsox1oesses (eared bytes)
2089t bbduszac
sFeabee asbsary

[
x06000010

ar3sash7
arasufes

Eiadernn
2tbesbac

Testing a Custom Instruction
BREKER"
e RISC-V ISA custom instructions pose a
particularly difficult verification challenge 2
’)) =
o Custom instructions need to be tested with =
the processor tests, not as an afterthought P
o Breker solution allows custom instruction tests)
to be easily added into test graph =)
o Breker synthesis combines these tests with the - =)
app to ensure full custom processor testing —
~ans)
/)
)
)
SoC-Integrity Challenges
BREKER"
Random Memory Tests Test Cores/Fabrics/Memory controllers across DDR, 1
OCRAM, FLASH etc
Random Register Tests Read/write test to all uncore registers
System Interrupts interrupts through CLINT Breker
Multi-core Concurrent operations on fabric and memory RISC-V SoC-Integrity
SystemVIP

Memory ordering

For weakly order memory protocols

Atomic operation

Across all memory types

System Coherency

Cover all cache transitions, evictions, snoops

System Paging/IOMMU

System memory virtualization

System Security

Register and Memory protection across system

System wide sleep/wakeup and voltage/freq scaling

Power

* End-to-End use cases
+ Early Firmware Testing

Breker Verification Systems,

nc. Al rights reserved.

+ Performance-Power Profiling

RISC-V SoC Integrity TrekApp

BREKER"
:x\/cm -
Privilege
Levels
DMA
int. 1/0
Multi-Agent
Schedules » X
| Memory Exceptions/
| Operations Interrupts.
© Breker Verifcaion Systems, Inc. Allghtsreserved n
RV64 MultiCore MoesiStates
BREKER"
© breker Verification ystems,Inc. Al ights rserved 2
Atomics Testing
BREKER"
Check result is aggregate of . - —
synchronized atomic .
operations = = = |-
) < sy 11
et < oo 1]
(e snetnacs
T £ ottt b
© Sreker Verifcaion Systems, Inc. Allghtsreserved. 5

Dekker Memory Ordering

BREKER"

Check ordering across
synchronized Dekker
scenarios

© Breker Verifcation Systems, Inc. Allights reserved. 2

False-Share Memory Stress Tests 4>

&

BREKER"

Summary

e RVIis creating a certification program that requires rigorous testing
o Probably will be an important part of RISC-V development in the future

o Breker is now providing state-of-the-art test solutions that accelerate and
amplify RISC-V core and SoC test quality

o RVI certification is likely to borrow heavily from commerecial verification
solutions such as Breker SystemVIP and Test Suite Synthesis

b RISC-V°

Thanks for Listening!
Any Questions?

Notes

Dilip Kumar

TessolveDTS Inc
Design Lead

Practical applications of machine learning in design
verification and ISO 26262 practices

User Paper

Abstract

ML (Machine Learning) is transforming the way we work in a wide range of industries and
this has been accelerated by generative Al (Artificial Intelligence) applications such as
ChatGPT. In this presentation we investigate how ML and Al can potentially be applied in
DV (Design Verification), from automation of requirements/specification analysis and test
plan generation, through test bench creation and test generation, to debug and coverage
closure. There is a very wide range of ML techniques available and this presentation first
surveys those techniques and how they have been applied (successfully and
unsuccessfully) to DV in both academia and in real projects. The objective is to better
understand how to apply the most promising techniques to a wide range of DV activities to
ultimately make DV both more efficient and effective. The main objective of the
presentation is to give the audience a better understanding of what is achievable of
applying ML in DV and to give practical suggestions on their adoption.

The integration of Generative Al (GenAl) into ISO 26262 practices represents a
transformative approach to automotive functional safety. As the demand for safer
automotive systems grows, it is essential to leverage strengths from other domains to
enhance automotive safety practices. Recent advancements in Generative Al models and
practices have opened new doors to innovative approaches. Beginning with an
understanding of Functional Safety concepts, the trained Al model proves useful in Hazard
Analysis and Risk Assessment (HARA), requirements management, Failure Mode and
Effects Analysis (FMEA), Automotive Safety Integrity Level (ASIL) determination, and
compiling compliance evidence The presentation features several noteworthy use cases
where the trained Al model is particularly useful for the Functional Safety team.

A HERO ELECTRONIX VENTURE

Biography

Dilip has 10 years of industry experience as a design verification engineer and has worked
extensively on verifying designs at full chip level as well as subsystem and IPs. Dilip has
worked with leading semiconductor companies on world class products and has gained in-
depth knowledge on the concepts of verification. Dilip currently works as a verification
consultant for Xilinx-AMD and is involved in verifying the FPGA designs at full chip level.

T=SSOLVE

A HERO ELECTRONIX VENTURE

Practical Application of Machine Learning in
Design Verification and 1SO26262

Mike Bartley, sve.coe | Marmik Soni, tead.coe | Dilip Kumar,Lead, coe

Chip Design Test Engineering Hardware Design Embedded Systems
Proven Capabilities Serving Leading Semicon Companies T=SSOLVE
Deep domain expertise across service lines built over a period of time ’
 Desanveticaton -+ Systom Hardware
 Detporea + ot Program Design ntegretion
| Prstaions STA Development
PR o Bra T
Strengths & ;P‘f's‘ Validation e - System Manufacturing
Capabilities - Feadibiy Sudy + BenchToATE = Syztem lovol Text
*+ Macro Modeling EEEET + Embedded Software
+ Circuit Design * Yield Optimization
 Cavo e sorvices
e + FallreAnalyss
G regraton
Expertise .
. oo o somamplosesuith 5+
. T=ESSOLVE
Outline Ao GO VENTURE
« Al Strategies
» Background
* Where are the main challenges in verification?
* Where do we think Al/ML could help?
« Experiencesin applying LLM (Large Language Models)
» Experiencesin applying ML to
» Coverage closure
« Debug
* Regression suites
« Practicalities
» Application in 1ISO26262
« Conclusions
© (-]
T=ESSOLVE
Al Strategy ero eSO

Features:

+ Preserved training data

+ Preserved prompts

Model selection & upgrades

(for conversational, coding assistance, analysis, Model v2
computational needs) o
Response validation Training Data

Migration to Al agents)
Needs and security-based Al solution range Results

Recorded -
User Prompts
Automated
test data

Currently validation is manual*

Historic summary from Tessolve “Verification Futures”

Mentions
12
12
12

Challenge

Complexity

Debug

Resources

Integrating Methods,
Languages and Tools
Completeness of the
verification e.g. coverage
Safety verification
Scalability

Mixed Signal

Power Verification
Productivity

Reuse

HW/sw

Security verification
Using Al/ML in verification

10

PO N®O©

=

(]

t On the rise

T
@

T=SSOLVE

AMERG ELEGTROMX VENTURE

Non-mover Design complexity
stabilising

70% projects use UVM

NON-mover ay; other methods <10%

44% of IC/ ASIC projects
are safety-critical

58% of IC/ ASIC projects
add security features to
their designs

On therise

New entry — the focus for the day

Requirements
1 Specification

Al/ML Experiments in IP Verification

T=SSOLVE

AMERD ELEGTROMX VENTURE

Verif Flow

Test
bench

Feature Coverage

Feature
Extraction

B
Agents

Coverage

Constraints Data

Simulation

ML
(various)

Debug

Regression
suites

Coverage
Closure

Simple Example: Xilinx Synchronous FIFO V3.0

T=SSOLVE

A WERD ELEGTROMX VENTURE

Applying LLM to Specification Analysis and Feature Extraction

Specification

SgnaiName [10 | Description

ONINO] [imput [Datanput

WREN Inpat | Write Enable request]

WRACK [Output |Wrte Acknowledge: Handshake signal ndicates successful
write operation

WRERR [Output _|Wrte Error: Handshake signal indicates unsuccessfol write
operation

RO_EN Input | Read Enable request) R

RO_ACK Output
read operation

Ro_enn (Gutput | Read Error: Randshake signal ndicates unsuccessful read
operation

o Input | Clock for read and wrte operations.

SNIT Input | Synchvonous ifialization ofalFIF funcions, fags, and
pointers

DOUTINO] _ [Output | Data Output

Ui (Gutput | Full Flag: Indicates that no adaltionalwritescan be
performe:

Ed Output | Empty Flag: Indicates hat no data i present

[DATA_COUNTI |Output [Data Count: Vector

col

Status Flags:

Features to be Verified:
Data Read and Write Operations:

Verify that data presented at the data-input port (DIN) is correctly
written into the FIFO on a rising clock edge when the write-enable
input (WR_EN) is high.

Verify that data can be read out of the FIFO via the data-output port
(DOUT) in the order it was written by asserting read-enable (RD_EN)
prior to a rising clock edge.

Verify the behavior of the memory-full status output (FULL) to indicate
when no more empty locations are available in the internal memory.

Verify the behavior of the memory-empty status output (EMPTY) to
indicate when no more data resides in the internal memory.

Invalid Request Handling:

Verify that the FIFO status is not corrupted by invalid read or write
requests.

1

CPU Register Extraction using Al Model

Sr. No. Register Name:

Register Address Register Size Access

YRegX 0x33 32 bits RIW
PRegX 0x33 32 bits RW
Host Interrupt/ Debug
Register 0x34 32 bits RW
Satus 0x34 1bit R
IntEnable 0x34 1 bit RW
KeySize 0x34 1 bit RW
AccessGranted 0x34 1 bit R
HostIntRegClr 0x34 1 bit RW
External Status Register 0 0x50 32 bits R
External Status Register 1 0x54 32 bits R
External Status Register 2 0x58 32 bits R
Lifecycle Register 0x5C 32 bits R
Clock/ Reset Register 0x60 32 bits RW
@B Control/ Status 0x64 32 bits RW

T=SSOLVE

AMERG ELEGTROMX VENTURE

Importance Functionality
) Sores the 32-bit secret key value used for secure
High :
operations.
High Stores the 32-bit decryption key value used for secure
9 operations.
" Contains interrupt and debug-related information for
edium
host communication.
Medium Indicates the presence of an interrupt condition.
Medium Enables or disables interrupts.
Medium ~ Selectsthe key size (128-bit or 256-bit).
Medium Indicates whether debug access s granted o not
Medium Clearsthe host interrupt.
. Connected to the chip top for external status
ow ¢
information.
. Connected to the chip top for external status
ow ¢
information.
Connected to the chip top for external status
Low
information.
Low Contains the lifecycle word read from OTP memory.
Low Controls the reset and enable signals for the subsystem.
Low Control and status register with undefined usage.

Register
©

FIFO ctd. - Applying LLM to a sim

ple directed test bench

T=SSOLVE

AMERG ELEGTROMX VENTURE

odule tb_fifo;
logic clock; logic reset;
logic wr_en; logic rd_en;

//Instantiate the FIFO module

initial begin clock = 0;
reset=1;

Reset the FIFO

#30; rd_e

// Declare signals and variables for the testbench
logic [DATA_WIDTH-1:0] data_in;
logic [DATA_WIDTH-1.0] data_out;

fifo #(DATA_WIDTH, FIFO_DEPTH) dut (.clock{clock),....)
always #5 clock = ~clock; // Initialize signals and variables

// Write data into the FIFO

1_in = 8hFF; // Example data value
#10; wr_en = 0; // Read data from the FIFO

Assertion for FIFO empty and full signals
assert property (fifo_inst. EMPTY [-> Ififo_inst.FULL);

bins empty =

1

fifo_
// Declare coverpoints for different events
coverpoint data_count {

dge clk);

{o;

bins non_empty = [1:S];

coverpoint write_enable;
coverpoint read_enable;
coverpoint full;
coverpoint almost_full;
coverpoint almost_empty;
// Declare cross coverage

Applying LLM on real projects

ﬁg/' ;J"h* g gmp|e cross data_count, write_enable;
) Sfinish; !
end // Display the output data directed cross data_c:?unt, read_enable;
always @(posedge clock) cross full, write_enable;
begin - o test cross almost_full, write_enable;
enfflsp fey("Date Out: b’ date_out); bench cross almost_empty, read_enable;
lendmodule endgroup
C (]
T=SSOLVE

AMERD ELEGTROMX VENTURE

Saving
DV Flow Conventional Efforts Al Assisted Efforts Engineering | o, b o Speedup
Efforts Saved
(Hrs) Savings (times)

Specification Analysis 1 Week, 1 Engineer 2 Hrs, 1 Engineer 38 95 20
Feature Extraction & Test
Plan Generation 2 Days, 1 Engineer 1 Days, 1 Engineer 8 50 2
Constraint Generation 1 Day, 1 Engineer 2 Hours, 1 Engineer 6 75 4
Coverage Generation 6 Hours, 1 Engineer 1 Hour, 1 Engineer 5 83 6
Assertion Generation 1 Day, 1 Engineer 2 Hours, 1 Engineer 6 75 4
UVM Template)
Generation 3 Days, 1 Engineer 2 Hours, 1 Engineer 22 92 12
° o

. . . T=SSOLVE
Savings on Hours with Al Assistance AR LSRR T

Verification Flow
B 100 Saving with Al Assistance

B

Debugging failures from a
regression
« Indicators from code source

for where to look for the root
cause

Commit time
Number of editors (1, 2, many)

Multiple files committed
together

History of “bugginess” of afile
Change in density of comments
Who made the commit!

I = Al assisted (9 = 9 s Savings
Advis| | ATexfn | Gowaen Geewen Goeon G (Hrs) (Hrs) Savings
102 17 85
— (]
; T=SSOLVE
Applylng ML to dEbUQ Daniel Hanson, e e
Verifyter (now Cadence) Tessolve DVClub 2021

How to use this?
* First use historic datafor training

Once we have atrained model
* Indicate where to start looking

* Identify “risky” commits as they
happen
» Run more check-in tests?
* Require reviews of riskiest commits?
 Use lint for design and test bench code
Tessolve Verif Futures USA Sept14 2023

Practicalities of applying Al/ ML in verification ero masTIOwC e
* Use of LLM

+ Understanding on using LLM

+ Data Set size
« Large data sets (of clean, unbiased data) are needed

* Security
* LLMsuse the cloud normally

CTesone 2024 (-]

1SO26262 — Automotive Functional Safety i e

« 1S0 26262 is an international standard for the functional safety of electrical and electronic systemsin
production automobiles.
+ Aframework to ensure that safety-related systems perform reliably and safely throughout their lifecycle.

Instrumental Cluster 1

ar Lights

Lights
B

Radar Cruise
Contr

©Tessolve 2024 ——————————————— ————————confidentid— @

Use case - ASIL Determination v T

@} Tessolve FUSA Al Expert

Do the ASIL determination for brake failure and give answer in table when,
car is on express way, night, raining raad, and speed is 120KMPH,

ST
& =
> - o
Criteria. i) - L
- - A
Sevity -
= X v
—c - e = =
[r
o x :
. [s c
CE A
ASIL Calculation
o . ;
T e R ——— - -
u a R 0

ARG ELEGTROMX VENTURE

Use case - ASIL Decomposition

Whst are 3 main advartages ef ASIL decempesition. Explain sach point in
16w

[Stcof ssean o o] e o)

T | B
[oic)

Tabieorvatg | [__2se [e)
rasge e | () ()

| decomposition [

T=SSOLVE
Use case - HARA A sz VTR
Hazard " Controllability
Hazard 1D (ol ion Severity (5 | Exposure (E) © ASIL Safety Goal (SG) Safety Measure (SM)
SM1: Use redundant power
i il SG1: Ensure both N L
Both headlights fail : supplies and control circuits.
H1 . 3 E3 c3 ASILC headlights do not . " "
simultaneously fail simultaneously Design the headlight system with
dual independent circuits.
SG2: Ensure at SM2: Implement diagnostic
least one headlight checks that can isolate a failed
H2 One headlight fails 2 E3 c2 AsLB 2o i e Py g et
if the other fails continues to function.
SM3: Use reliable sensors and
. . control algorithms to manage the
;'Ne:‘;::g":fgfl" @ SG3: Ensure proper switching of beams based on real-
H3 o from high 2 E3 c2 ASILB switching between time data. Employ adaptive
9 high and low beam lighting systems that respond to
oncoming traffic and
i conditions.
Headlights do not SG4: Ensure ‘SM4: Incorporate ambient light
turnon automatic sensors and fail-safes to activate
H4 automatically in 3 E2 c2 ASILB activation of headlights when low light
low light headlightsinlow conditions are detected. Regularly
conditions light conditions test and calibrate sensors.
i
. . T=SSOLVE
Use case - Safety Mechanism Recommendation AR ELECTAONC VT
©) Tessolve FUSA Al Expert
Give me wery short answor on safety mechanism of $ widely used SoC
What is the Safety mechanism for PLLY components. Give your answer in table format.
RS ———
- o
. T=SSOLVE
Conclusion -
« Al/ML will change the way we do verification, results are promising with
« Spec analysis, Feature extraction, test bench infrastructure
« EDA are adding Al/ ML under the hood
« Challenges are,
* Model accuracy
« Rigorous validation
* Reliability
« Data security
« Standard for GenAl usage
o o

T=SSOLVE

A HERO ELECTRONIX VENTURE

THANK YOU

@ wwiesonecon

] mikebartiey@tessolve.com

Click to add text

3l
p=n3)

chip Test Hardware Embedded o ° o @
Design Engineering Design Systems

Notes

Larry Lapides

Synopsys
Exec. Director, Business Development

A Holistic Approach to RISC-V Processor Verification

Gold Sponsor

Abstract

Processors using the open standard RISC-V instruction set architecture (ISA) are becoming
more and more common, with an estimated 30% of SoCs designed in 2023 containing at
least one RISC-V core. Whether licensing RISC-V IP and adding custom instructions, using
open-source RISC-V IP, or building a RISC-V processor from scratch, verification of RISC-V
processors is a task in the SoC project plan. With the variety of sources for the processor
IP, the range of complexity and the span of use cases, a one-size-fits-all approach to RISC-V
processor verification does not work.

This session will present a holistic approach to RISC-V processor verification. It will address
processor complexity from microcontrollers to application processors to arrays of
processors for Al accelerators, different levels of integration from unit to individual
processor to processing subsystem to SoC and cover different scenarios depending on the
source of the processor IP. Matching different technologies and methodologies to this
multidimensional verification space is critical.

In addition, we will elaborate on different decisions that go into the verification plan for
RISC-V processors and review the different technologies and methodologies that are
employed in a holistic approach to processor verification.

Biography

Larry Lapides is Executive Director, Business Development at Synopsys, responsible for the
Imperas-branded products. Prior to Synopsys’ acquisition of Imperas Software Ltd. in 2023,
Larry was VP of Worldwide Sales & Marketing and a member of the founding team. Before
Imperas, he held several roles in sales and marketing including VP of worldwide sales
during the run-up to Verisity’s IPO. Larry holds a BA in Physics, with General Distinction in
Physics, from the University of California Berkeley, a MS in Applied and Engineering Physics
from Cornell University and an MBA from Clark University.

SYNOPSYS

SYNOPSYS’

Best-in-Class Complete product family with

3 n O p S y S verification #1 products in all categories
Fast.est Highest-performance engines
e rI | C a I O n Engines accelerate time-to-market
Fa I ' I I I Comprehensive, ready-to-use design,
verification, and IP solutions for RISC-V

www.synopsys.com/verification

SYNopsys'

A Holistic Approach to RISC-V

Processor Verification

Larry Lapides, Exec. Director, Bus. Dev.
Verification Futures Austin, 2024

Agenda

* Why should we use RISC-V?

« Challenge: the RISC-V verification disconnect
* ARISC-V processor verification solution

« Dynamic verification

+ Formal verification

* Summary

SYNOPSYS Symopeys Contiental nomaton 2024 Synopsys, e

Why should we use RISC-V?

Anyone can design their own processor based
on the RISC-V ISA

Modular ISA = choice of which features to
include/exclude

Extensibility and freedom to customize at ISA
and micro-architectural levels

RISC-V enables the creation of domain-
specific differentiated processors

SYNOPSYS

RISC-V is Crossing the Chasm: 2023-2024

Moving beyond early adopters, into early mainstream

THE CHAsM

« Initially only used by ‘visionaries’ like

SiFive, Andes, Nvidia, Microchip

« Then systems companies wanting
domain specific processors
— Meta Infrastructure, Google, ...
— 10T companies
— and early adopter semiconductor companies

e.g. Qualcomm, Nvidia Networking (Mellanox),
Silicon Labs

SYNOPSYS cpsys Confdetial informason 2028 Sy, e

RISC-V is Crossing the Chasm: 2023-2024

Moving beyond early adopters, into early mainstream

THE CHAsM

* Now...
— Every semiconductor vendor has a RISC-V
SoC project in flight
— Every hyperscaler company has a RISC-V
project at least at the test chip phase
— Every automotive OEM and Tier 1 has a
RISC-V project at least at the test chip phase

SYNOPSYS

Expected RISC-V Market Growth

Decply Embedded (¢, Fnte State Machine)
16 |- Microcontroler

cosrocessor
10 || - Aoplcaion Procesor e.. host CPU)
n

CAGR >40%

©
z
=8
. —
. [N)
ol ==

SYNOPSYS

The RISC-V Verification Disconnect

RISC-V Core User: RISC-V Core Developer:
« Expects core quality to be the + Needs to deliver high-quality core
saTge &S AR v + Potential issues with necessary
° é?I_LVE”f'Ica“O” cycles ’;37’ expertise, methodologies,
simulators running b technologies, resources

RISC

SYNOPSYS

Challenges in RISC-V Processor Verification

< Design complexity — architecture, micro-architecture, implementation
choices, custom features

< Source of processor IP (in-house, open source, vendor + custom
instructions)

« Use case: microcontroller — application processor; closed versus
open to external software development

« Verification productivity and time to closure

« Team experience (designers and verification engineers)
 Processor verification methodology
« Tool selection

SYNOPSYS

What have we learned in the last 7 years?

« A verification plan is needed
« Different than with SoC DV, a high-quality, fully functional reference model is needed

« As with SoC DV, the full range of verification technologies is needed
— Dynamic verification
— Formal verification
— Hardware-assisted verification

SYNOPSYS opsys Contdetial fomaton

RISC-V Processor Verification Process
Design verification from unit to SoC

Design Level Example
Unit Pipeline, FPU Formal + predefined assertion IP
Security Formal + predefined security assertion IP

Architecture ISA Dynamic
Formal + predefined assertion IP

Custom instructions, CSRs | Custom DSP, matrix Dynamic
Formal sequential equivalence checking,
register verification, datapath validation

Processing subsystem Coherent cache, multi- or Dynamic, especially using hardware assisted

y-p or or
Formal property verification for cache
coherence verification
Synopsys yocpys Contdnt fomaion ot o

Synopsys RISC-V Processor Verification Solutions

Formal Verification

VC Formal FPV + VSO.ai STING
RISC-V ISA AIP Coverage Oplimization Test Generation
Functional Verification
ImperasDV
VC Formal DPV Co-Simulation and Checking
Verfy computational correctness for Verification Environment
RISC-V processors)
; L imperasFe '
: ImperasFPM [;
VC Formal SEQ | RISCVReferenceModel | | RISCYISAFuncional 4
Veriy that custom instructions do not Coverage
break the original core
VCS & Verdi ZeBu & HAPS
VC Formal Portfolio Dynamic Simulation HW Assisted Verification

Verdi Verification Planning and Functional Coverage Platform

SYNOPSYS

Dynamic Verification: ImperasDV

ImperasFPM RISC-V Processor Model: for
comparison of correct behavior; extendable

for custom instructions Synapsys VCS

) X . Debug driver
ImperasDV: provides configuration, ImperasDV.
comparison and checking, pipeline
N N . ImperasTS RI: RTI RVVI ImperasFC
synchronization and scoreboarding riSCVISATESTS &memory | Tracer Functional coverage [d Verdi

ImperasFPM
RISC-V Model

ImperasFC: deploys SystemVerilog functional
coverage code for each ISA extension

riscvISATESTS/ImperasTS: provides
directed test suites

SYNOPSYS nopsys Contdetal fomaton

ImperasFPMs (Fast Processor Models) for RISC-V

ImperaAsFPM + Base Model implements RISC-V specification in full
| * Fully user configurable to select ISA extensions and
versions
« Pre-defined configurations and custom instructions for
RISC-V Model Config processor |P vendors

Base Model 250+ params

User extensions built in a separate library do not
perturb the verified Base Model, help reduce
maintenance

Because every ImperasFPM uses the RISC-V Base
Model, and including users of both commercial and
free tools, over 150 companies, organizations and
universities have used the ImperasFPM

SYNOPSYS rcpsys Contdetial fomaton o

ImperasFC: SystemVerilog Functional Coverage for RISC-V

« Functional coverage code generation

— Manual creation would be tedious, time
consuming and error prone

— >100K lines of code
— Synopsys tools can automatically generate

ImperasFC

functional
coverage

functional coverage code for custom instructions ~ Machine- SystemVerilog
readable coverage
RISC-V ISA code generator
* Functional coverage is the key specification

verification metric

https://github.com/riscv-verification/riscvISACOV/tree/v20240124/documentation for list of covered extensions

SYNOPSYS rcpsys Contdetial fomaton o

Integrating ImperasDV with Verdi

FiscVISACOV: RISC-V Systenveriog Functionsl
Coveraga; RV321

Auto-generated documentation in Functional coverage data is reported
markdown and csv formats for in verification tools such as Verdi
inclusion in Verification Plans

SYNoPSys yopeys Canfidenal nformation 24 9
STING
Preventing bug escapes for complex RISC-V designs [Configurations
) . | Co+basedtests

« Self-checking test generation for RISC-V [“AShtike Directed Tests |
« Addressing single CPU and complex many core SoC designs ot Gonerar
* Generates constrained-random, directed stimulus, and

combinations of the two
« Portable across simulation, emulation, prototyping and silicon

Full support for the RISC-V ISA specification
Extensible to custom instructions and peripheral devices

ImperasDV adds comprehensive checking and functional
coverage when STING output is used in VCS

SYNOPSYS Sy — 200 Sypopsys, e, 16

Formal Verification: VC Formal

Formal verification provides exhaustive proof of
correct behavior

Excellent tool for unit-level DV
~ Can get started early, even with design engineers

~ Unitlevel includes pipeline, floating point unit, load/store untt, ...

RISC-V ISA Assertion IP (AIP) available to enable
early use of VC Formal

VC Formal Apps improve verification efficiency of
many tasks

—~ Register verification, datapath validation, connectivity checking,
security verification ...

Synopsys

VC Formal Apps

KPropagation

suo Chects Verdication

Socuential Secistly

Equivaience Verdicatian Law Pawer
RV e

Regtes Coweage Consctainy

wercatce Anayzar Chackeg

RISC-V Formal Verification

« VC Formal FPV + AIP (Model Checking):
— Prefetch Buffer
~ LSU - Load/Store unit

- Pipeline

« VC Formal DPV (Equivalence Checking):
- ALUMULT/Dotp
- Decoder

« SEQ (Equivalence Checking):

~ Clock gating verification in every functional unit

~ Design comparison in presence of new features/timing
changes

FRV (Formal Register verification)

- CSR

FSV (Formal Security Verification)

SYNOPSYS

RISC-V Assertion IP (AIP)

RV32| base ISA, for example:
~ LOAD-LSU
— STORE - LSU

~ BRANCH/JUMP/LU/AUIPC - PFU
-EXU

~ Environment call/break point
— Zicsr extension

~ CSR Write

~ CSR Read

VC Formal FSV: Formal Security Verification
Ensure data security objectives are met through exhaustive formal analysis

secure
destination

Integrity

\ﬂola_lloy.

unsecure
source

destination

SYNOPSYS

VvC RMAL FSV

Detect security issues that are hard to find through other
techniques

Users define security properties to check for data integrity
and data leakage issues

Flexible property creation and management

ML powered engines for fast performance

Data propagation analysis and debug with temporal flow view

Verification of multiple scenarios in one session

What have we learned in the last 7 years?

Starting point:
« A verification plan is needed

« Different than with SoC DV, a high-quality,
fully functional reference model is needed

« As with SoC DV, the full range of verification
technologies is needed
— Dynamic verification
— Formal verification
~ Hardware-assisted verification

SYNOPSYS

Keys to Success:
« Support for full RISC-V specification

« Custom instructions easily added and verified

« Silicon-proven processor verification tools,
models, and methodologies

SYnopsys:

Learn more nopsys.com/RISC-V

Vikram Khosa

Arm
Principal Engineer

Pushing forward the frontiers of formal in Arm CPUs

User Paper

Abstract

Over the last decade, formal verification has been steadily maturing into a mainstream
methodology and seeing serious adoption across various semiconductor companies,
including Arm.

However, the long-held promise of being able to deploy formal to exhaustively verify
designs in a timely manner is still limited by size, complexity, and cost of compute. In
addition, opportunities for novel formal use-cases are also tempered by their own fresh set
of challenges.

This talk covers some of these challenges and the innovative solutions being developed to
address the twin demands of convergence and efficiency.

Biography

Vikram Khosa has been spearheading initiatives in formal methodology as well as involved
in hands-on deployment of formal methods for functional and security verification, across
various roles in A-class CPU design projects, at Arm’s Austin design center since 2013.
Previously, he led memory-system verification for the Cortex A15 CPU. He has also worked
in various verification roles for other companies, including 2 early-stage start-ups. He holds
a master’s in computer engineering from the University of Minnesota, Twin Cities and a
B.E. (Hons.) from BITS Pilani.

arm

Notes

arm

Pushing the Frontiers of
Formal in Arm CPUs_=*

Verification Futures Conference, Austin TX

Vikram Khosa
Sep 12,2024

Outline

-~ Early Hurdles

-~ Path to Mainstreaming
-- Present Challenges

-- Contours of the Future
-- Vectors of Innovation
-~ Conclusions

arm

arm

Early Hurdles

Early Hurdles

-~ Designer Engagement

-- Management Buy-in

-~ Right scope

-- Ownership

-~ Resourcing

-~ Criteria for Success/Completion

arm

arm

Path to Mainstreaming

Path to Mainstreaming

-~ Integrating formal in development flow
- Goal to get formal out of its silo
- Evolve away from centralized team
« Position formal as a desirable skill for all verification engineers

« Formal engineer embedded within the respective unit team
Owns both simulation and formal
Move TB to formal-only opportunistically

arm

Path to Mainstreaming

- Scoring minor successes and building on them
« Critical to developing credibility
-- Key drivers towards achieving left-shift
- Datapath C2RTL + theorem-proving (novel methodology)
- Specialized flows : Clock-gating, X-prop
« Formal TBs around smaller units
Precondition : ability to stay in sync with RTL development

Required a dedicated, focused formal engineer
Eventually enables formal-only T8

© 2028 Arm arm

Path to Mainstreaming

« Role of management
Strategic patience supporting long-term vision

- Organizational adjustments
Consciously push engagement with val/unit leads
CPU Formal Council to enable cross-site alignment
Cross-site working groups for technical collaboration & reuse

« Smart bets on small/special problems
Sustain focused resourcing till we see results

« Limited investment in solving tougher challenges
Become drivers to develop new technologies/flows
Enables progressive scaling formal to bigger problems
Architectural-specification based / end-to-end flows

arm

arm

Present Challenges and
Solutions

Compute Cost -- Challenges

-- Overall compute footprint driven by increasing
- design/feature complexity
- deployment surface

-~ Increased compute bandwidth requirements
- driven by shorter overlapping project cycles
« reduced time-to-market across increased number of served segments

<= Formal is no exception

-~ Additional factors
« More unit/multi-unit environments
+ More users
« More design configurations > more regressions
- More specialized formal flows (clock-gating, X-prop, functional-safety, security)
« More bug-hunting strategies
« More formal-engine solver threads/partitions distributed across cluster

Compute Cost — Cluster/Flow-based Solutions

¢ Cloud Migration
« Demand-based cost structure
« Increased efficiency for burst/peak demands
« Pre-emption overhead
* Dedicated lower-cost clusters
« Lower-cost CPUs
- Minimize/avoid contention with other formal/non-formal runs
- Also improves startup latency
* Debug-fitted regressions
- Don’t generate more fails than you have resources to debug between runs
- Stop regression after some number of fails
- Don’t generate the same failure more than once

* Optimally-sized regressions : don’t spread resources too thin
« Running on too many (disparate) properties at once can undermine effectiveness and coverage

Compute Cost — Tool-supported Solutions

* Proof Caching/Profiling
« Restore results from previous run if no changes
- Learn optimal engine settings etc. across regressions
- Bound aggregation

* Hybrid Flows
- Enabled by stagnation-detection
- Exhaustive Proofs followed/overlapped by Bug-Hunting
« (Lack of) Overlap controlled by saturation of progress

* ML-based Optimizations
- Proof strategies within and across runs
« Tuned to specific designs/properties

Complexity Squeeze - Challenge

-~ Ever-increasing complexity across the board
- Even lower-profile CPUs adding more speculation for performance

-~ Inter-unit Complexity = Upward Pressure
- Desire to test complex features across a broader surface-area >
- Bigger DUTs
- (Typically) Lower Interface Complexity/Volatility
« Higher Design-Complexity
- Tool Burden
- Intra-unit Complexity = Downward Pressure
- Desire to test at subunit level for better coverage
+ Smaller DUTs
« Smaller Design-Complexity
- Higher Interface Complexity/Volatility
« Designer Burden

arm

Complexity Squeeze - Solutions

 Interface/Stimulus Complexity
- Intentional Over-Constraints
« Narrower Scope of Checks
« Bringup-only TBs

« Design Complexity
- Transaction Limiting Profiles
- Abstraction Models
« IVAs
- Design Mutations

arm

Designer Engagement - Challenges

« Engagement varies by site

* Common challenges
- Ownership of interface properties
- especially related state-tracking
+ Additional formal TB support
« Abstractions etc.

* Attempts to promote formal-based designer bring-up
« Only successes were organic and based on designer’s innate interest
« Top-down mandates don’t work
« Positive factors
+ Formal-friendly designer
- Suitable scope
- Negative factors
- Existing mature simulation TBs
+ Excessive schedule pressure

. arm

Designer Engagement — Strategies

* Designer training
* Formal integration into smokes and other Cl flows

* Push-button debug & fix-qualification flows
« Sometimes requires dumping FSDBs from FV tool

* Support of a focused FV engineer
- Offloads maintenance while allowing them to explore the design
« FV owner support interface constraints that require state tracking
« Allows them to maintain lighter-weight constraints in some cases

arm

arm

Contours of the Future

Contours of the Future

-~ Proliferation of FPV
+ Number of environments
- Size
- Complexity
-~ Increased Areas of Focus
- Regression Efficiency
« Architecture/Specification Derived Checkers for Niche Areas
Decode, RAS
« Liveness
- Security
« Functional Safety
-~ Areas of Increased Alignment
« E2E Checker Methodology

« Front-end Tools & Specialized flows
Central formal team to own and support

18 0208 Am

arm

arm

Vectors of Innovation

Convergence - |

* Human-guided Proof Closure
« Automated invariant generation based on user-curated list of signals
- Experiments with engine-level integration
« JUG Paper ‘22

* Structured Proofs
« Proof Decomposition
- Helper Integration
- Book-keeping enables Safe Composition
« Both full and bounded proofs
« Automatic case-splitting based on key, independent variables

* Proof-orchestration improvements (stagnation-detection)

20 ©2024 rm

arm

Convergence - Il

Bug-hunting flow improvements
- Mitigate effect of free variables (oracles) across a leapfrogging trail of covers

Trace profiling
« Mine known bug/cover traces for interesting covers/transitions
- Apply these as soft constraints to direct engines to similar scenarios

Regression clumping
« Smaller groups of similar properties
« Similar COI, complexity
« Exploit locality
« Multi-property engines, manual out-of-COl abstractions

Flow-graph based approach (JUG Paper’22)

Bound Aggregation for elastic BMC

arm
Special Flows
* Architectural Specification based flows
- ISA-F
+ MMU-F
- Decoder-F
+ MEM-F
- CAT2SVA
* Liveness, FSM deadlocks
* X-Prop & Clock-gating Improvements
arm
Novel Use-Cases
« Security (information-flow based)
- Evolution of semantics & operators
- Taint-propagation based abstractions
- Exploration of various attacks/vulnerabilities
- Spectre, Meltdown, Spoiler, Spectre-BHB
+ JUG Paper 22
- Verifying mitigations
* Symbolic Simulation
¢ Multi-Cycle Path Verification
arm

arm

Conclusion

Conclusions

-~ Formal no longer a fringe/novel technology at Arm
« as with rest of industry

-~ Increased maturity/adoption/success = increased compute footprint

-~ New challenges driven by
« Dueling demands of efficiency vs. effectiveness
« Increasing complexity of designs targeted by formal
« New areas of application for formal methods

-~ Meeting these challenges and preparing for the future
« Requires investment in innovation
Extending to novel use-cases
Reducing compute-cost and complexity
Improving convergence

e arm

Thank You
DENG
Gracias
Grazie
AT
HYMES
Asante
Merci
ZArRtLCt
§gdiq
Kiitos

1588
Al

_nTIn
rsdfix ° o

The Arm trademarks featured in this presentation ere
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. Al v

featured may be tr

Notes

Track Session

Latest Topics in Verification
Lonestar Ballroom — Salon A+B

FLOOR PLAN

Magnol
Bluebonnet
| one Star Salon D
Ballroom
Longhc
__________ g
Stairs E
Salon A Salen B fan C v
£
5
Canitol a
Sycamore B apito
B _‘:n; amore | Al +—B8 Cent Prefunction Area
MO
Sy » A .
Sycamore Wran et ‘ I t Desk M Club
tnt Jhxit Flevators
| obby Bar & Restaurant
| Entrance/[xit

We would be grateful if you could move to the track session as quickly as possible

Notes

Nianhang Hu

University of Nebraska - Lincoln
Graduate Student

Using Symbolic Execution to analyze Hardware TCP/IP
StacksBased on HLS Development

User Paper

Abstract

Hardware accelerators developed based on High-Level Synthesis(HLS) are becoming
increasingly popular in modern computing systems. Symbolic execution is a powerful
technique for analyzing software programs, but its application to hardware accelerators
developed with HLS presents some challenges. This paper explores the use of symbolic
execution to analyze a real-world HLS-based hardware accelerator, hardware TCP/IP stack.
We discuss the challenges encountered in this context, and propose feasible solutions to
use symbolic execution to improve code coverage testing. Overall, this paper highlights the
great potential of symbolic execution in analyzing HLS hardware accelerators and suggests
directions for future research.

Biography

Mr. Nianhang Hu has been pursuing a Master’s degree at the University of Nebraska-
Lincoln since 2022. He earned his Bachelor's degree in Electronic Engineering from
Zhengzhou University in 2005. With extensive industry experience in chip functional
verification and bring-up, he has worked at prominent companies including Foxconn, TI,
and Nufront. Notably, he led a team of 20 firmware engineers for three years, achieving a
100% first-pass success rate and 98% functional test coverage in bringing up four ARM-
based chips. His exceptional skills in both software and hardware debugging have been
instrumental in his success.

N

UNIVERSITY of NEBRASKA
LINCOLN

Notes

Using Symbolic Execution to analyze
Hardware TCP/IP Stacks
Based on HLS Development

Nianhang Hu

12Sep2024e
Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588

Hardware TCP/IP Stack (l)

* Implementing the TCP/IP protocol on
the FPGA.
* Using High-Level Synthesis (HLS) -
technology to convert high-level “
languages into hardware description

language. FPGA Hardware

Hardware TCP/IP Stack (ll)

Software TCF/IP Stack

* Enhanced Offloading Capabilities. .
* Increased Throughput and Reduced i
Traditional LSSl . 2
latency. [—

* Programmability

* Reduced CPU Overhead

* Scalability

l MNatweorking l

Host GPU

High-Level Synthesis (HLS)

@ { Suftware alidation Hardware verification
. _ cioH
* Increase design efficiency Design »]
Hi
A J

* Reduce design complexity
@ [sardware]4—[Hartware synthesis]

* Support high-level abstraction

« Difficult to find the correspondence between high-level and low-level code.
* Challenges in testing and verification.

* Lack of effective debugging tools.

Motivation

* Propose a symbolic execution tool.
* lIdentify issues at an early stage of code development.

* Enhance code coverage for the hardware TCP/IP stack.

Symbolic Execution

void read(int x) { x<0
if (x<0) {
if (x < -3)
foo (x) ;
else {

]

else {

if (x > §)
bar (x)

else {

* https://www.researchgate.net/publication/220623844_Cloud9_A_Software_Testing_Service

Analyze C/C++ Code

Problems:

* Special data type in the HLS library
* Arbitrary precision integer types
* Streaming processing data types

* Parallel computing in the HLS library

HLS special data type (l)

Using basic data types to construct arbitrary bit-width data types

Basic data types:

« unsigned char

« unsigned short ‘ ap_uint<W> data;

N N *W: bit width, from 1 to 4096
* unsigned int

* unsigned long

HLS special data type (Il)

ap_uint <1> flag; ap_uint <128> flag;
W=1 W=128
unsigned char Two “unsigned long” variables

HLS special data type (lll)

void make_symbolic_case1(}
ap_uint<128> tcpData;
unsigned long temp[2];

make_symbolic(&tcpData,
sizeof(tcpData), "tcpData");

for(inti=0;i<2;i++){
tcpData.range((i+1) * 64 - 1,i * 64) = templil;}}

Concurrent Computation

Remove the code that supports concurrent access in the HLS

library and replace it with single-threaded sequential access.

* Modify multithread tasks to single-thread tasks.

Refactor functions unsupported by symbolic execution

Implement some library functions that symbolic execution does

not supportin C++

« std::vector, std::map and std::cout function.

Evaluation

Enhance the verification efficiency and code test coverage of
hardware TCP/IP stacks.

Using the TCP three-way handshake code as the test subject,
comparing symbolic execution and random testing in terms of
testing efficiency and coverage.

Q&A

Rahul Kande

Texas A&M University
Ph.D. student

Hardware Fuzzing to Secure Modern Hardware

User Paper

Abstract

Hardware is at the heart of computing systems. However, recent years have seen increased
attacks exploiting hardware vulnerabilities and exploits, which even traditional software-based
protections cannot prevent. Hardware fuzzing has shown promise in detecting vulnerabilities in
large-scale designs like modern processors. In this talk, | will describe the hardware vulnerabilities
in hardware description languages, such as Verilog and VHDL. Then, | will explain a new and radical
approach called hardware fuzzing to find these vulnerabilities and detail how fuzzing techniques
can be combined with existing formal verification techniques to detect vulnerabilities efficiently.
Finally, | will discuss a strategy for pinpointing vulnerabilities to accelerate the mitigation process
and briefly talk about improving the efficiency of hardware fuzzing using ML/AIl techniques, such
as multi-armed bandit (MAB) and large language models (LLM).

Biography

Mr. Rahul Kande is a Ph.D. student in the Computer Engineering and Systems Group at Texas A&M
University since 2018. He completed his Bachelor of Technology in Electronics and Communication
Engineering from the Indian Institute of Technology Guwahati in 2017. He developed TheHuzz, a
novel hardware fuzzer that detected new vulnerabilities in popular open-source processors. This
work received great traction in the industry and academia, especially Intel and the Office of Naval
Research (ONR), USA, who are now jointly funding their future fuzzing projects. Rahul has won
several awards and scholarships during his Ph.D. program, such as the departmental Quality
Graduate Student Award in 2023 and Graduate Merit Scholarship in 2018, 3rd place at IEEE HOST
2022 Hardware Demonstration, and USENIX Security Symposium Student Grant in 2020 and 2021.
His research involves developing more efficient and automated hardware fuzzing techniques to
detect vulnerabilities in hardware, especially processors.

More on Rahul Kande: https://www.rahulkande.com/

More on Rahul Kande’s research group at Texas A&M University: https://seth.engr.tamu.edu/

TEXAS A&M

UNIVERSIT Y.

I

https://www.rahulkande.com/
https://seth.engr.tamu.edu/

Notes

Hardware Fuzzing
Why? What? How?

Rahul Kande
Advisor: Dr. Jeyavijayan (JV) Rajendran

Secure and Trustworthy Hardware Lab

{I,'d TEXAS A&M

UNIVERSITY.

SYNoPSYS®

LOCKHEED MARTMT"‘"

Overview

Partl: Hardware Security Vulnerabilities
[GLSVLSI'21,DAC’22]

Part2: Hardware Fuzzing
[USENIX'22]

Part3: Hardware Fuzzing Extensions
[USENIX’'23,ICCAD’23,DATE’24,USENIX'24,DAC’24,TIFS'24]

Massive Growth in HW Vulnerabilities

» Hardware vulnerabilities emerging at an alarming rate

Total documented hardware vulnerabilities (CVEs) by year
* Hardwarewuinerabitities-are-difficutt-to-be-patcH
* Pentium FDIV: $475 million, 1994 |
+ Meltdown and Spectre: biggest patch coordifation
+ Xilinx Star : ftity-is it

92

HacktheSilicon

* International hardware security capture-the-flag
competitions @ DAC, USENIX Security, and CHES

. : Promote hardware security verification

* RISC-V SoC platform

* Bugs injected in collaboration with Intel

https://hackthesilicon.com/

HacktheSilicon Impact
®

. participants from countries
. vulnerabilities detected
competitions

: 31 ISENIX

5t [l) 255 e AT TIN5 aissmuarion

HACKEDAC 2023 HACKSDAC 2022 HACKSDAC 2021
SULY 0913, 2023 JLY 1014, 2022 DECEMBER 05.0% 2021

30 USEN a 29 SENIX a
SE[JHH:'S‘!- : €& Ruvomarion ISV Auvomarion € AbTomaTION

HACKEDAC 2019 HACKBDAC 2018
amy

HACK@DAC 2020
JULT 19.22. 3020 JUNE 0204, JUNE 2428, 2018

Motivation

T *
source soft
: Can we fuzz hardware designs to

Google Open S . .
accelerate vulnerability detection?

J O s Random

TinyGLTF bug Testing

* Ideal

Completeness

Hardware Fuzzing Framework

Coverage metrics

: All statements in RTL code
: Control signals (se/] sel3 of)
:0>1/1>0 transitions of flip-flops
: States & state transitions of FSM
: Control path combinational logic
(AND gate in (2))
: Data path combinational logic
(CEI= & (6))

Seed
add x1, x2, x3
sub x1, x2, x3

l

Opcode: add,

sub, mul,
GPRs: X0, X1,...
Seed Vulnerability

generator Mutation engine Coverage detection

Kande R., et al., TheHuzz: Instruction Fuzzing of Processors Using Golden-Reference Models for
Finding Software-Exploitable Vulnerabilities, in USENIX Security, 2022.

TheHuzz Impact

Compatible Automated

cCHi=2Er ¥
Verilator

VERILOG @ Synopsys

Practical Efficient

Simple to run (students trained) Detected 11 vulnerabilities,
than existing tech

* 9O

Hardware Fuzzing Overview

covers hard-to-reach ChatFuzz generates inputs with data
design spaces and control flow entanglement

Seed Vulnerability
add x1, x2, x3

detection
sub x1, x2, x3

7 %
i L Speculative

Specure
12z identifies optimal seeds _.* PSOFuzz identifies optimal schedule
that generate “interesting” inputs WX of mutators and seed generator

HyPFuzz: Framewo

Fuzzer

Scheduler

@ Point
selector Reachability
O0-00Q

Property
Test case generator

database
Test case
i Boolean assignmen
converter

Chen, C,, et al., HyPFuzz: Formal-Assisted Processor Fuzzing,
in USENIX Security, 2023

HyPFuzz Impact

Existing 11 vulnerabilities less time

new vulnerabilities, CVEs: CVE-
2022-33021, CVE-2022-33023

Coverage achievement:

to different coverage metrics

Hardware Fuzzers Impact

PSOFuzz MABFuzz Chatfuzz
* Vulnerability detection: * Vulnerability detection: * Vulnerability detection:
faster faster . faster N
hi . hi * Two vulnerabilities
Coverage achievement: * Coverage achievement: , Coverage achievement:
faster faster faster

WhisperFuzz IFTFuzz
new timing vulnerabilities * Spectre, (m)WAIT, Zenbleed

violates zero latency * Not limited to timing side-
requirement [1], considered as channels

LLMs for Assertion Generation - Motivation

What if there is no reference model?
Use assertions to

Seed detect
add x1, x2, 3 Test ¢ vulnerabilities
sub x1, x2, x3 datab

ase
se
Hardware assertions _L Constraints

assert property (@(posedge clk) disable iff ((!rst_ni))
(rdata != 0) |-> (Spast(reglk)
elis $display{ ERROR, Register aciess \iolated!i,

Signal names ~ Syntax Signal values Conditions Timing

Use LLMs to automatically generate
assertions!

LLMs for Assertion Generation

accuracy

00
100

LLM evaluation framework
Benchmarks «<—>HW CWEs
Prompt Evaluation Metrics

Prompt Configurations
Assertions Generated

Accuracy varies extremely
with prompts

% Accuracy

1000 1500

Prompt ID #
accuracy

Kande, R., et al., (Security) Assertions by Large Language Models,
in IEEE Transactions on Information Forensics and Security, 2024

Hardware Fuzzing Impact ‘ # intel

. new functional vulnerabilities L Sandia
: : . LOCKHEED MARTIN -~ National |
. new microarchitectural vulnerabilities Labosatories

M SAGYSH C\/E-2021-40506 CVE-2021-40507 CVE-2021-41612
CVE-2021-41613 CVE-2021-41614 CVE-2022-33021
CVE-2022-33023

Machine L . 8! w O

Machine Learning Helps Fuzzing Find
Hardware Bugs > Age-old software-testing
ta_x:hmqnc automated to boost chip supply b Harheare s, Conbining
throughput ; Capabilities Of Formal Verification
ST n Methods And Fuzzing Tools
.

Publications

ande, R., Crump, A, Persyn, G., Jauernig, P, Sadeghi, A-R., Tyagi, A. and Rajendran, L., “TheHuzz: Instruction fuzzing of proc
usmg olden-Reference models for inding Software-Exploitaple vulnerabiliies, USEIX Security Symposium, pp. 3319-3036, 2022

Chen, C., Kande, R., Nguyen, N., Andersen, F., Tyagi, A., Sadeghi, A.R. and Rajendran, J., “HyPFuzz: Formal- ed Processor Fuzzing,
USENiX Security Symposium, pp. 1361-1378, 2023.

Kande, R., Pearce, H., Tan, B., Dolan-Gavitt, B., Thakur, S., Karri, R. and Rajendran, 1., “(Security) Assertions by Large Language
Models,” IEEE Transactions on Information Forensics and Security, 2024.

Gohil, V.*, Kande, R.*, Chen, C., Sadeghi, A.R. and Rajendran, J., “MABFuz Multiarmed bandit algorithms for uzzing processors
IEEE besign, Automation & festin Eutope Conference & Exhibition (DATE) pp. 1

Rostami, M., Chilese, M., Zeitouni, S., Kande, R., Rajendran, J. and Sadeghi, A.R ”Beyond random inputs: A novel ml-based hardware
fuzzing,” IEEE Design, Adtomation & Test in Europe Conference & Exhibition (DATE), pp. 1-6, 2024.

Borkar, P,, Chen, C., Rostami, M., Singh, N., Kande, R., Sadeghi, A.R., Rebeiro, C. and Rajendran, 1., “Whisperfuzz: White-box fuzzing for
detecting and locating timing vulnerabilities in processors,” USENIX Security Symposium, 2024,

Chen, C., Gohil, V., Kande, R., Sadeghi, A.R. and Rajendran, ., “PSOFuzz Fuzzm processors with particle swarm optimization,”
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 023

Rostami, M., Zeitouni, S., Kande, R., Chen, C., Mahmoody, P., Rajendran, J. and Sadeghi, A.R., “Lost and Found in Speculation: Hybrid
Speculative Vulnerability Detection.” ACM/IEEE Design Automation Conference (DAC), 2024.

Sadeghi, AR, Rajendran, . and Kande, R, “Organizingthe world's largest hardware security competiton: challenges, opportunitis,
and essons learned,” Great Lakes Symposium on VLSI, pp. 95100, 2091

Chen, C.*, Kande, R.*, Mahmoody, P.*, Sadeghi, AR, and Rajendran, L, “Trusting the trust anchor: towards detecting cross-layer
vulnerabilities with hardware fuzzing.,* 59th ACM/IEEE Design Automation Conference, pp. 1379 2022

* > equal contribution

Thank You!

Rahul Kande

Notes

Ishaq Unwala

University of Houston Clear Lake
Associate Professor of Computer Engineering

Verification education: Opportunities and Challenges

User Paper

Abstract

Functional verification is facing a challenging task to verify ever more complex designs.
Finding well educated, experienced verification engineers is always a challenging task. This
task is made more challenging by the fact that colleges don't provide proper education on
verification techniques.

To meet this challenge, there is a need to promote functional verification in colleges and
present it as a career path to the students. This requires cooperation by the faculty
members and support from the industry. Currently, colleges don't promote functional
verification as a subject. The students are not even aware of the career opportunities in
verification. Graduating Computer Engineers learn verification techniques incidentally as
part of logic design class. This is not sufficient for verification of today's designs.

The opportunity for the industry is the ability to hire a well-educated functional verification
engineers, instead of having to train them on-job. Cooperation between industry and
colleges can meet the future verification challenges. Despite many commonalities, there
are significant differences between the education of functional verification and design
engineers. The presentation will also point out the similarities and differences in education
requirements.

Biography

Dr. Ishag Unwala is an Associate Professor of Computer Engineering at University of
Houston Clear Lake. He received his undergraduate degree in Electrical Engineering from
West Virginia University, Morgantown, WV. He received his M.S. and Ph.D. degrees in
electrical and computer engineering from the University of Texas at Austin, Austin, TX, in
1986 and 1998, respectively.

I

University
of Houston
Clear Lake

After working in semiconductor industry for 20 years for VLSI Technology Inc, IBM Corp,
Intel Corp, Intrinsity Inc, Apple and Oracle (SunMicro Systems), he joined University of
Houston Clear Lake in 2014. At University of Houston Clear Lake, he teaches both
undergraduate and graduate courses, and conducts research in various computer
engineering topics. He has co-authored over 20 technical papers and articles. He has
directly supervised 5 Thesis students and taught over 300 graduate students.

His professional involvement includes serving as Section Chair of IEEE Galveston Bay
Section and Vice Chair of IEEE Vehicle Technology Society in Galveston Bay Section. He is
the recipient of IEEE R5 Outstanding Individual Achievement Award 2019. Under his
guidance IEEE Galveston Bay Section received multiple awards: |IEEE Galveston Bay Section
received the 2019 R5 Best Small Section award, two IEEE R5 NASA/JSC Stepp Stone awards
2019 and global 2022 IEEE MGA Outstanding Small Section award.

His research interests include Cyber-physical systems (Internet-of-Things), Computer
architecture and micro-architecture, Digital systems design, Hardware design verification
techniques and technologies, Formal verification methods, Functional coverage,
Engineering CAD tools technologies and techniques.

o S

University
of Houston
Clear Lake

Verification education:
Opportunities and Challenges

Ishaq Unwala, Ph. D.
Associate Professor of Computer Engineering

University Of Houston Clear Lake

lﬁ Introduction

of Houston
Clear Lake

Professional Education:

* Ph.D. University of Texas at Austin
* MS. University of Texas at Austin
* B.S.E.E. West Virginia University

lﬁ“ Introduction

of Houston
Clear Lake

Work experience:

* Oracle Corporation (SPARC CPUs)

¢ Apple. (ARM CPUs)

 Intrinsity Inc. (ARM CPUs)

* Intel Corporation (x86 CPUs)

¢ IBM Corporation (POWER4 CPU)

* VLSl Technology Inc. (EDA software development)

* Computer Services (Hardware and Software services)

— Introduction
of Houston
Clear Lake
Joined University of Houston Clear Lake in Fall 2014

¢ Current classes in Computer Engineering

Verification of Digital Systems | Digital Systems Testing

Low Power Systems Design Fault Tolerant Computing

Research Project and Seminar | Microprocessor Programming

Microprocessor Interfacing Labs for classes

* Research interest:
— Hardware verification
— Computer architecture/micro-architecture
— Digital Systems Design
— Engineering CAD tools

o

University
of Houston
Clear Lake
* Verification
— Evaluation that a design meets its specification

* Today we will discuss
— Only functional verification

¢ We will not discuss

Timing verification
Power verification
Performance verification
Post-silicon verification

i —
|

> N

University
of Houston
Clear Lake

Digital Integrated Chip Design

of Houston
Clear Lake

Behavioral
Emulator

Checkers
Irritator
T.Generator
Theorem pro

Test enyironment

3 logic Higher order logic

Hardware
Verification Higher order logics

Simulatiog+Formal Propagitional Logic

Non-temporal
Hybrid

Acceleration

Emulation

o

University
of Houston
Clear Lake

Idea

No Verification
Specification Dynamic Verification, Formal (Sequential Equiv.
checking, Model checking, Theorem Proving)
RTL

Gate Level

Equivalence checking or
test vectors

Switch level

Transistor level }
LV

Layout

Beyond the scope
of this presentation

‘ Post-Silicon Verification

Mask design

Fabrication

o

* Computer Engineering basic education
— Circuit Network concepts with labs
— Electronic components with labs
Basic Digital logic with labs

Programming in assembly language
Programming in C or C++

Introduction to Computer Architecture
— Verilog or SystemVerilog (or VHDL)

University Ve r I fl Catl O n
of Houston
Clear Lake
Specification r 77‘ Dynamic Verification, Formal (Sequential Equiv.
- Jy checking, Model checking, Theorem Proving)
RTL . - ‘
,‘ -
9
University Ve r I fl Catl O n
of Houston
Clear Lake
RIL
Gate Level _ Equivalence checking or
Switch level testvectors
Transistor level |
J
,‘ -
10
aiersiy Education
of Houston
Clear Lake

lH Design vs. Verification
of Houston
Clear Lake
* Design Engineer Specific Skills
— Timing — design meets timing requirements
— Efficient implementation of algorithm
— Area —design fits in allocated area
— Power — design stays in power envelope
— Transistor sizes — for driving long wires
— Routing wire congestion

lE Design vs. Verification

of Houston
Clear Lake

* Verification Engineer Specific Skills
— Architectural knowledge
— Functional understanding of the design
— Debugging skills to find bugs
— Effective and efficient software design
— Coverage of events
— Verification tools, simulation and formal
— Test generation to exercise target logic

lE Verification challenge

of Houston
Clear Lake
Design Challenges
¢ Increasingly complex micro-architectural designs
* Increasing of functional integration (SOCs)
¢ Higher performance and lower power requirements
* Shorter time to market
* Practical size of verification team
¢ Simulation run times increasing due to

— increase in design size
— Larger and more complex verification environment

e Cost of “bug” in terms of lives, cost of recall, reputation,
product liability, even survival of the company

lE“ Verification challenge

of Houston
Clear Lake
Work force challenge
* Colleges don't promote verification as an career
* Few college graduates with verification knowledge
* Shortage of well educated and skilled verification engineers
* Most student are not even aware of verification as a career

* Graduating students learn verification incidentally, rather than
as a subject. (Insufficient to verify current designs)

lﬁ Verification Opportunit

of Houston
Clear Lake

Opportunity for industry
¢ Academia can not solve all the verification challenges
— But academia can provide well educated verification engineers
* Industry can get well educated verification engineers from
colleges, rather that train them on job
¢ Industry and academia should work together to promote
verification as a viable career
* Industry can provide
— Funding for research in verification related topics (Helps to train

verification engineers)
— Internships for students to get familiar with verification

Track Session

Training Session 2
Lonestar Ballroom — Salon C

FLOOR PLAN

Magnolia
Bluebonnet
| one Star Salon D
Ballroom
Longhorm
__________ g
Stairs E
Salon A Salon B Salon C 7]
£
3
Capitol &
Sycamore B apito
Sycamore Al -+— Business Center Prefunction Area
MO
Pycamore A Wrangler hront Desk M Club
Entrance/Exit
Flevators
| obby Bar & Restaurant
| Entrance/[xit

We would be grateful if you could move to the track session as quickly as possible.

Notes

Doug Smith

Doulos
Engineer / Instructor

Practical Hacks for SystemVerilog Coverage

Gold Sponsor

Abstract

Ever wondered how to reuse coverpoints across several covergroups? Or how to collect
coverage in different hierarchies? SystemVerilog coverage gets the job done, but it still has
some missing, unexpected, and even head scratching behaviors. This tutorial will discuss
several of these issues and offer some tips and hacks to work around them.

Biography

Doug Smith is a verification engineer and instructor for Doulos based in the Austin Texas
area with expertise in UVM and formal technologies. He has been using formal technology
for several decades, performing formal verification on many kinds of designs and formal
applications. Likewise, he has provided formal application support at both Jasper and
Mentor/Siemens EDA. At Mentor/Siemens EDA, he served as a formal specialist and
verification consultant, where he provided both formal consulting and developed an
automotive functional safety formal app for performing formal fault campaigns. At Doulos,
he delivers training in verification methodologies like UVM, SystemVerilog, and formal
technology.

Doug holds a masters degree in Computer Engineering from the University of Cincinnati
and a bachelors degree in Physics and Biology from Northern Kentucky University.
Currently, he resides in Paige Texas with his wife and family on a small farm where he
raises bees, cows, horses, chickens, and pigs and loves driving a tractor.

A

DOULOS

[;\ Global

pouos Training Solutions

ESL & Verification Methodology

» SystemVerilog » UVM
» SystemC » TLM-2.0 » Formal

Hardware Design (ASIC / FPGA)

4

» VHDL » Verilog » SystemVerilog
» Tcl » AMD » Intel FPGA

Embedded Software

» C » C++ » Zephyr » Linux » Yocto » Security 4
» Arm Cortex A/R/M » Rust » Android

Al & Machine Learning

» Edge Al » Deep Learning

» Python ‘
Practice — Share - Learn
Simulate your hardware description code

playground in a web browser for free

Call +1-888-G0O-DOULOS to discuss your training needs
www.doulos.com

{.\ KnowHgGw

DOULOS WEBINARS T w www.doulos.com

Practical Hacks for SystemVerilog Coverage
LRt e . N
= Types of SystemVerilog Coverage

Coverage Hacks

Summary

JON

DOULOS

Types of SystemVerilog Coverage

DOULOS

Cover properties ...

Use SVA temporal syntax
Can use the same properties that assertions use
Accessible through the assertion API (IEEE 1800-2023, Section 39)

Placeable in structural code only

Covergroups ...
Record values of coverpoints
Provide functional crosses of coverpoints
Accessible by SV code and testcases

Placeable in both objects and structural code

Assertion Coverage / Code coverage API
Only assertion coverage supported by tools (IEEE 1800-2023, Sec. 39)

Cover Property

Simulators count the number of time the property holds

Display information in waveforms and in a report

cover property (@ (posedge clk)
$rose(req) |=> ((req && ack)[*0:$] ##1 !req));

N I I o
S L L
e T N

Cover success *

Tool dependent display)
Cover count 0 x I T 0

Covergroups

N

DOULOS
Plan for all the interesting cases, then count them during simulation

module InstructionMonitor (
input bit clk, decode,
input logic [2:0] opcode,
input logic [1:0] mode);

covergroup cg
@ (posedge clk iff decode);
coverpoint opcode;
. coverpoint mode;
endgroup

cg cg_Inst = new;

00 01 10 11

endmodule: InstructionMonitor
(coverage counts 2-state values)

Cross Coverage

10
11
0o o] A o L A4
covergroup cg ...
coverpoint opcode;
coverpoint mode; 10 0 o 3 19 1 1 1
cross opcode, mode; %
endgroup g
01 3 3 2 3 2
: o ol A o&a A&
7
4
00 3
1 o 1 2
Count all combinations (000 001 010 03;‘:2‘;0&101 110111,
- of crossed coverpoints.
6

What's Wrong with SV Coverage?

DOULOS

Limitations

Scope — location and sampling of non-local signals

Features — combining coverage, extending coverage, etc.

Cross coverage
Cannot Cross across covergroups

Non-intuitive filtering

Unexpected behaviors

Special keyword behavior

Neglected by the SV Committee
No significant changes since 2005 until latest 1800-2023 LRM

Practical Hacks for SystemVerilog Coverage
[AR e S N

Types of SystemVerilog Coverage

= Coverage Hacks

Summary

DOULOS

Practical Hacks for SystemVerilog Coverage
[@ AR B . N

Hack #1 — Use Coverage Options Wisely

Per Instance Options
DOULOS

covergroup cg @ (posedge clk);

option.per instance = 1;
option.weight = 5;
option.goal = 90;
option.at_least = 10;

option.comment = comment;

a: coverpoint a { option.auto_bin_max = 128; };
b: coverpoint b { option.weight = 50; };

(These options require per_instance = 1
endgroup

cg gl = new;

gl.option.goal = 100;
. . Instance can be used
gl.a.option.weight = 80;

covergroup cg (ref int v, input string comment);

coverpoint v;

option.per_ instance = 1;
option.weight = 5;
option.goal = 90;
option.comment = comment;

endgroup

int a, b; (Same definition - multiple uses)

cg cg_instl = new(a, "This is cg instl - variable a");:

cg cg_inst2 = new(b, "This is cg inst2 - variable b");

11

Watch Your Weights

DOULOS
covergroup cgl @(...);
N . System
option.weight = 9;
9%
covergroup cg2 @(...); 34% Module 1
option.weight = 5; 35%
p > Wi lq 7%
Module 4 Module 3
covergroup cg3 @(...); 7% 3% 5%
Module
Module 5 Module & 7 Module2

Coverage % = ((cgl x 9) + (cg2 x 5) + (cg3 x @ (cg4 x 34) + ...) / Yweights

Default
Once weighted, all items must be weighted!!

12

Type Options

Type options apply to the entire covergroup type

covergroup cg @ (posedge clk);
type_option.weight = 5;
type_option.goal = 90;
type_option.strobe = 1;
cp_a: coverpoint a {

type_option.comment = comment;

i
coverpoint b;

endgroup

cg::type option.goal = 100; @equires constamexpressions)
cg::cp_a::type_option.weight = 80;

For Real! —real_interval

NEW! - DOULOS
1800-2023

real a, b;
covergroup cg (@ (posedge clk);

type_option.real interval = 0.01;

bins bl[] = {[0.75:0.85]};

bins b2[] = {[0.75:0.85],[0.90:0.92]};

bins b3[] = {[0.753+/-0.01]};
endgroup

14

Practical Hacks for SystemVerilog Coverage
N AR Eae . N

Hack #2 — How to Cover Non-Local Signals

DOULOS

15

Pulling Values Into Covergroups

DOULOS

module InstructionMonitor (

Coverpoints must be local

scope input bit clk, decode,

input logic [2:0] opcode,

input logic [1:0] mode);

How do you pull in out-of-

block signals? cevergEotb o9

@ (posedge clk iff decode);
coverpoint opcode;

How do you cross between SSESIECITIgIEES

covergroups? endgroup

16

Use Covergroup Arguments

covergroup cg;

coverpoint testbench.covunit.a;
coverpoint $root.test.count;

coverpoint testbench.covunit.cg inst.cp a; x

endgroup (Coverpoint refs not allowed

covergroup cg (ref logic [7:0] a, ref int Db);

coverpoint a;
coverpoint b;

endgroup

cg cg_inst = new(testbench.covunit.a, $root.test.count);

17

DOULOS

Add a Sample() Method

class reg_tx_address extends uvm reg;

covergroup reg_tx_addr_cg with function
sample (uvm_reg_data_t data, bit dir); «
coverpoint data;
coverpoint dir {
bins RD = {1};
bins WR = {0};
}

endgroup
class reg_tx address extends uvm_reg;

virtual function void sample (uvm_reg_data_t data,
uvm_reg_data_t byte en,
bit is_read,
uvm_reg_map map) ;
if (get_coverage (UVM_CVR REG BITS)) begin
reg_tx addr_cg.sample(data, is_read);
end
endfunction
endclass

DOULOS

18

Extend Covergroups

class base; - -

endclass

NEW!

~a i
enum {red, green, blue} color;
covergroup gl (bit [3:0] a) with function sample (bit b);
option.weight = 10;
option.per_instance = 1;
coverpoint a;
coverpoint b;
c: coverpoint color;
endgroup
function new();
gl = new;
endfunction

class derived extends base;

bit d;
covergroup extends gl;
option.weight = 1;

c: coverpoint color {
ignore_bins ignore = (blue}; }
coverpoint d;
cross a, d;
endgroup :gl
endclass (Cross with other covergroups)

-
1800-2023 DOULOS

19

Practical Hacks for SystemVerilog Coverage

I AR - TR .

Hack #3 — How to Mix SVA Coverage

with Covergroups

20

class testbench

class collector

Coverage registers

E Covergroups)

H
class monitor

Cover Properties

module _interface bus if

SE

21

Cover Property

® Uses sequence/property in interface
sequence cond_jump;
logic [3:0] opcode ;

logic [ww-
logic [ww-1:0] jump_target pc;

@ (posedge bus_if.clk)

fe
##1
((datar[15:12] == jzero_op ||
datar[15:12] jneg_op), opcode = datar[15:12],
jump_instr_pc = addr)

##[1:8]
fe
##1
(1, jump_target_pc = addr,
cover_jump (opcode, jump_instr_pc, jump_target pc)
)

endsequence: cond_jump (Note: sample local variables)
cover property (cond jump) ;

DOULOS

:0] J:ump_instr_pc; fe /__ _ _/__
datar —(»-———
first match (addr (——— N

Transfer Coverage to Monitor

typedef struct packed {
logic [3:0] opcode ;
logic [ww-1:0] jump_instr_pc,
logic [ww-1:0] jump_target pc;
} jump_data_t;

interface basic _bus_if;
jump_data_t jump data;
bit jump_trig =

function void cover_jump(logic [3:0] op,
logic [ww-1:0] jump_instr_pc, jump_target pc);
[jump_data = {op, jump_instr pc, jump target pc}-

jump_trig = ~jump_trig; Interface function

endfun-~++<~-
class monitor extends ...;

task p _Jump () ;
forever begin
jump_data t t; jump_xact tr;
@(m_bus_if.mon_xact.jump_trig)
'—————— t = m_bus_if.mon_xact.jump_data;
tr = new(t.opcode, t.jump instr_pc, t.jump_target_pc);
.write(tr); // Send to covergroup

end

endtask: process_jump Bus monitor task

23

Record Coverage with Covergroup

class collector extends ...;

virtual function void write(input jump xact t);
m_cov.opcode = t.opcode;
m_cov.jump_instr pc = t.jump_instr_pc;
m_cov.jump_target pc = t.jump_target pc;

m_cov.jump_delta = m_cov.jump target pc - m_cov.jump instr pc - 1;

m_cov. .sample () ;
endfunction

covergroup i
coverpoint jump_delta {

bins no_jump ={01};
bins short jump_ fwd = { [1:15] };
bins long_jump fwd = { [16:2%*ww-1] };
bins short_ jump_back = { [-15:-1] };
{

bins long_jump_back =
option.at_least = 4;

[-2%*ww+1:-16] };

}
endgroup:

DOULOS

24

Advantages

Cover property ...

* Protocol defined in the interface (everything kept together)
* Protocol defined using temporal syntax--not a custom FSM

Covergroup ...
* Provides additional coverage options

® Provides cross coverage

® Accessible by testbench or testcase (coverage feedback)

DOULOS

25
Practical Hacks for SystemVerilog Coverage
[@ AR e @ N
Hack #4 — How to Direct Stimulus with
Coverage
JON
DOULOS
26

Querying coverage

get_coverage() returns % covered (as a real number) on
covergroups and coverpoints

initial
repeat (100) @ (posedge clk) begin
cg_inst.sample;
cov = cg_inst.get coverage;
if (cov > 90.0) cg_inst.stop;
end

DOULOS

randcase
(100 - $rtoi(cg_inst.a.get coverage))
(100 - $rtoi(cg_inst.b.get coverage))
(100 - $rtoi(cg_inst.c.get coverage))

endcase

27

Querying bin coverage

covergroup cg;

coverpoint i {
bins zero ={0};

bins tiny = { [1:100] };

bins hunds[3] = { 200,300,400,500,600,700,800,900 };

}

endgroup

DOULOS

C

get_coverage() does not work on bins

ov = cg_inst.i.zero.get coverage () ;x Not allowed '

28

covergroup instr_cg;

op_nop :
coverpoint instr word[15:12] { bins op =

op_load :
coverpoint instr word[15:12] { bins op

op_store
coverpoint instr word[15:12] { bimns op =

op_move
coverpoint instr word[15:12] { bins op

endgroup

nop_op }; }

load op };}

str_op }; }

move_op }; }

cov

® Now aet coveraae () can be used ...

= cg_inst.op_nop.get_ coverage() ;

int

};

Randomize using dist

constraint bias opcodes { integral expressions
opcode dist {

}
—<30me simulators only support variables)—

The dist operator accepts changing random weights

weight nop =1,
weight load =1
weight_store =1
weight add =1

.

1800 LRM: dist accepts

nop_op weight nop,
load_op weight_ load,
store_op weight store,
add_op := weight_add,

DOULOS

Use pre_randomize to set weights

function int calc weight (opcode t op);
real cov;
case (op)

endcase
calc_weight = 100 - $rtoi(cov) + 1;
endfunction : calc_weight

function void pre randomize() ;

weight nop = calc_weight (nop_op);

weight load = calc_weight (load op);

weight store = calc_weight (store op);

weight_add = calc_weight (add_op);

EEEtAE e (Beware!! No longer truly random!)

pre_randomize() sets the weighting used by the dist

nop_op: cov = covunit.cg.op nop.get_coverage;
load_op: cov = covunit.cg.op_load.get coverage;
store_op: cov = covunit.cg.op_ store.get coverage;

31

DOULOS

Practical Hacks for SystemVerilog Coverage

=
LR\ e @ N

Hack #5 — How to Include Cover Properties

into Functional Coverage

32

Create a Coverage Counter

DOULOS

bit coverage[string];

cl: cover property (coverage["cl"]=1;
c2: cover property (coverage["c2"]=1;

Check tool support
covergroup cg @ (posedge clk);

type_option.strobe = 1;
coverpoint coverage["cl"] {
bins match = { 1 };

op

}
coverpoint coverage["c2"] {
bins match = { 1 };
}
endgroup
cg cgl = new;

always @ (negedge clk)
coverage = '{default:0};
33

—

DOULOS

Add Weights and Cross

covergroup cg @ (posedge clk);
type_option.strobe = 1;
option.per instance = 1;

cp_cl: coverpoint coverage["cl"] {
bins match = { 1 };
option.weight = 1;

}

cp_c2: coverpoint coverage["c2"] {
bins match = { 1 };
option.weight = 0.5;

}

cross cp_cl, cp_c2;

endgroup

34

Practical Hacks for SystemVerilog Coverage
LNt e . N

Hack #6 — Avoid Coverage Gotchas

DOULOS
35

illegal_bins

DOULOS

Opcode table

) 000 | load
logic [2:0] opcode; 001 | store

logic signed [15:0] jump_distance; 010 | add
011 | sub
100 | unused
covergroup cg @ (posedge clk iff decode); 101 | and
110 | shift
111 | jump

coverpoint opcode {
bins move op[] = { 3'b000, 3'b001 };
bins ALU op = {[3'b010:3'b011],[3'b101:3'b110]};

bins jump op = {3'blll};
illegal bins unused op = {3'b100};
}

endgroup

Value

not counted

36

illegal_bins

excludes values from a covergroup--that's good

throws errors-—-that's bad!

** Error: Illegal range bin value='bl01l1l got
covered. The bin counter for the bin
'"\/covunit/cg_i.b.bad' is 362.

Questions to consider:
Should something passive throw errors?

If used for checking, what happens if coverage is turned off?

Better option:
write assertions and checkers for checking

ignore_bins for coverage

37

Using default bins

bit [15:0] i;

fdefault catches unplanned or invalid vaIues)

covergroup cg @ (posedge Clock) ;
coverpoint i {
bins zero ={0};

bins tiny = { [1:100] };

bins huge = { [1000:8] };
ignore bins ignore = { [501:599] };
bins others[] = default;

}

One bin for each other value)
endgroup

bins hunds[3] = { 200,300,400,500,600,700,800,900 };

38

int a; // 232 values

covergroup cg ...;
coverpoint a { bins other[] = default; }

endgroup

® Use of default may crash your simulator:

** Fatal: The number of singleton values exceeded the
system limit of 2147483647 for unconstrained array bin ‘other’
in Coverpoint 'a' of Covergroup instance '\covunit/cg_i".

® Do you really want to look at 2147483647 bins?

X One bin for each value

39

¢ default bins are not included in the coverage calculation!

covergroup cg (@(posedge clk);

bins a[4] = default;«— |
}

cx_ab : cross cp_a, b;

endgroup

?f‘ C¥P cgiicp_s 0.0% 00 0.0% | —
ol C¥P cgh 25.0% w0 25.0% @

4+ 8l CROSS cg:icx_ab 0.0% 100 0.0% | —
(Therefore, no cross coverage! >/

N

.
cp_a : coverpoint a {

DOULOS

40

m
DOULOS

Avoid [] with default, or use with smaller variables with fewer
possible values

logic [7:0] a; // Fewer ve
covergroup cg ...;
coverpoint a {

bins other = default; // One bin
}

endgroup

Use wildcard or min/max ($) to catch remaining values

bins huge = { [1000:5] }; //

wildcard bins a[4] = { 'b?0 }; //

41
Practical Hacks for SystemVerilog Coverage
I 2 O Eae . N
=» Summary
[\
DOULOS
42

Hack #1 — Use Coverage Options Wisely

Hack #2 — How to Cover Non-Local Signals

Hack #3 — How to Mix SVA Coverage with Covergroups

Hack #4 — How to Direct Stimulus with Coverage

Hack #5 — How to Include Cover Properties into Functional Coverage

Hack #6 — Avoid Coverage Gotchas

43

N

DOULOS www.doulos.com
[— N e N\ e

SoC Design & » SystemVerilog » UVM » Formal

Verification » SystemC » TLM-2.0

FPGA & Hardware » VHDL » Verilog » SystemVerilog

Design » Tcl » Xilinx » Intel FPGA (Altera)

Embedded Software » Emb C/C++ » Emb Linux

» Yocto » RTOS » Security » Arm
Python & Deep Learning P

[————

Systamverio Vi e [\ 1%9’ (ZRTOS E:’ isi
gy KM e A w25 stsm

Q&A

Any questions?

A

DOULOS

45

Track Session

VHDL Verification
Lonestar Ballroom — Salon D

FLOOR PLAN

Magnol
Bluebonnet
| one Star Salon D
Ballroom
Longhc
7777777777 g
Stairs 5
Salon A Salen B fan C o
£
5
Capitol &
Sycamore B apito
B _Sy_' amore | Al +—8B Cent Prefunction Area
MO
Sy 2 A .
Sycamore Wrane Jer ‘ I t Desk M Club
tnt Jhxit Flevators
L obby Bar & Restaurant
| Entrance/[xit

We would be grateful if you could move to the track session as quickly as possible.

Notes

Espen Tallaksen

EmLogic
Managing Director

A pragmatic approach to improving your FPGA VHDL
verification

User Paper (Remote presentation)

Abstract

A good architecture is very important for FPGA design, but it is in fact equally important for
verification of complex FPGA design. The verification architecture determines the
verification efficiency and the product quality for complex designs.

The difference between a good and a “normal” verification architecture could be many
hundred hours, and for medium to complex designs even as much as a couple of thousand
hours. The only good thing about this - is that you can easily do something about it. UVYVM
was made exactly for this and is free and open source - and used by 35-40% of all FPGA
VHDL designers world-wide. A new ESA (European Space Agency) project has just been
initiated to extend UVVM even further.

In this presentation, we will show you how to make a simple, well-structured, and efficient
testbench using the open-source Universal VHDL Verification Methodology (UVVM)
architecture. We will also discuss the importance of testbench sequencer simplicity and
how it can be used to control multiple VHDL Verification Components simultaneously. We
will show testbench examples for a simple interrupt controller, for AXI, for Avalon and
more - to illustrate how UVVM will help allow pragmatic and simple verification of both
simple and complex DUTs.

Biography

Espen Tallaksen is the CEO of EmLogic, in Norway.

Espen is also the author and architect of the Open Source UVVM (Universal VHDL
Verification Methodology).

He has a strong interest in methodology cultivation and pragmatic efficiency and quality
improvement, and he has given lots of presentations at various international conferences
with great feedback. He is also giving courses on FPGA Design and Verification.

£ EmLogic

Notes

£ EmLogic

A pragmatic approach to
improving your FPGA VHDL verification
Verification Futures Conference, US
12 September, 2024

(by Espen Tallaksen, CEO EmLogic)

The leading FPGA design centre in Norway and Scandinavia (www.emlogic.no/leading)

EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

£ EmLogic

= Independent Design Centre for Embedded Systems and FPGA

= Established 1st of January 2021. Extreme ramp up
¢ January 2021: 1 person
* September 2024: - 43 persons (SW:19, HW:4, FPGA:18, DSP:1+)

= Continues the legacy from ?f bitvis

* All previous Bitvis technical managers are now in EmLogic

* Verification IP and Methodology provider

* Course provider within FPGA Design and Verification
* Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, ...)
¢ Advanced VHDL Verification - Made simple (Modern efficient verification using UVVM)

= A potential partner for ESA projects for European companies
¢ Increased opportunities due to Norway's low geo return

2 Pragmatically improve your FPGA verification [EmLogic

What is UVVM?

UVVM = Universal VHDL Verification Methodology
= VHDL Verification Library & Methodology
= Free and Open Source

= Very structured infrastructure and architecture
= Significantly improves Verification Efficiency
= Assures a far better Design Quality

= Recommended by Doulos for Testbench architecture
= ESA projects to extend the functionality

= IEEE Standards Association Open source project |deit®] o)
= Runs on any VHDL-2008 compliant simulator
SIEMENS Menior ALDEC)

3 Pragmatically improve your FPGA verification

Testbenches in the industry:
Far worse than design

= Architecture is normally far worse
« Far worse structured (architecture)
« Far worse documented
« Far worse coded
= We waste far more time on verification
* Saving-potentials from 20% to 75% on average...
« 75% means 4 times the "possible" time.
« Average? Maybe a factor of 2 (50%)
= TB quality could have "double quality improvement"
* The testbench in itself could be much better for finding bugs
* Faster verification allows more verification

4 Pragmatically improve your FPGA verification £ EmlLogic

Applying the design solution?

Same issues:

Structure &
Architecture

=» Basic infrastructure

=> Divide and conquer at all stages
=> Prioritise the reader at all times

Simplicity Same approach:
Modifiability, Maintainability, Extensibility
Debuggability

Reusability Same solution:
- Architecture, Architecture, Architecture

UVVM System A a-n
ot B TFond] - Simplicity where needed the most

Library | TCM | Functional
Transactions |_Coverage

Watchdogs WWCs Spc'if:gf::s" Same challenge:
Monitor Scoreboard m,?;‘;i;n Awareness, Awareness, Awareness

AXI-light, AXI-stream, Avalon MM,
Avalon Stream, UART, SPI, GPIO, 12C,
SBI, GMIL, RGMII, Ethernet, ..

5 Pragmatically improve your FPGA verification £ EmlLogic

Example on test sequencer code
and transcript/log

Testbench

clock_generator (clk, GC_CLK PERIOD) ;

log(ID_LOG_HDR, "Check Interrupt trigger clear mechanism"); irq_source(n)

check_value (irg2cpu, '0', "irg2cpu default inactive");
check_stable (irg2cpu, now - v_reset_time, "Stable irg2cpu");
gen_pulse (irq_source(3), 'l', C_CLK_PERIOD, "Set IRQ 3 for clock period");

await_value (irq2cpu, 'l', 0 ns, 2* C_CLK_PERIOD, "Interrupt expected");

sbi_write (C_ADDR_ITR, x"AA", "ITR : Set interrupts"); Al p.rq.acedures with:
- Positive acknowledge
. . If wanted
2000.0 ns Check Interrupt trigger clear mechanism

- Alert message
and mismatch report

110.0 ns check_value() => OK, for std_logic '0'. irq2cpu default
727.5 ns check_stable() => OK. Stable at 0. Stable irg2cpu - Alert count and ctrl
1060.0 ns Pulsed to 'l'. Set IRQ source for clock period
1117.5 ns await_value(std logic 1, 0 ns, 20 ns) => OK. Interrupt expected
2020.0 ns SBI write(A:x"2", x"AA") leted. ITR : Set i
6 Pragmatically improve your FPGA verification £ EmlLogic

UVVM Utility Library
for simple and advanced testbenches

= check_stable(), await_stable()

= clock_generator(), adjustable_clock_generator()
® random(), randomize()

= gen_pulse()

= block_flag(), unblock_flag(), await_unblock_flag()
= await_barrier()

= enable_log_msg(), disable_log_msg()

= to_string(), fill_string(), to_upper(), replace(), etc...
= normalize_and_check()

= set_log_file_name(), set_alert_file_name()

= wait_until_given_time_after_rising_edge()

= etc...

7 Pragmatically improve your FPGA verification £ EmLogic

Basic Randomisation in “old” UVVM

= Under UVVM Utility library : methods_pkg
= Simple functions - using shared variable seeds:
* my_int :=random(VOID);
* my_int :=random(4, 245);
* my_slv8 :=random(8);
* my_byte_array := random(1, 16);
* my_time := random(1 ns, 15 ns);
= Also provides support for fixed random sequence
* Needs to control seeds locally
* random(4, 245, seedl, seed2, my_int);

Still the simplest possible solution for simple Randomisation

8 Pragmatically improve your FPGA verification £ EmLogic

UVVM Enhanced Randomisation

Quality & Efficiency enablers
= Well integrated with UVVM Structure & Architecture g ope
¢ Alert handling and logging in particular R
= Strong focus on Overview & Readability T —————
* Adding keywords to ease understanding

J
iy |
|

Reusstily

UVVM System

Utility BFMs. ‘CDHSU. RE"‘d.

Library

LM
Transsctions |_Coverage
Watchdogs wvCs | SPecification
Coverage
Error
Injection
AXL-light, AXI-stream, Avalon MM,
Avalon Stream, UART, SPL, GPIO, I2€,
581, GMIL, RGMIL, Ethernet, ..

Monitor Scoreboard|

9 Pragmatically improve your FPGA verification £ EmLogic

Single Method approach

= "Standard" approach: Randomisation in one single command
* Simple randomisation is always easy to understand

‘addr <= my_addr.rand (0, 18); ‘

* More complex randomisation is normally more difficult to understand
BUT - there are ways to significantly improve this

‘addr <= my_addr.rand (0, 18(7)); ‘
[addz <= my_adar_zand(0, 18((ADD }30,31));
‘addr <= my addr.rand(0, 1830,31) EXCL) (7)) ; ‘

o q But - what does this mean???

|add: <= my_addr.rand(0, 18, (30,31), (7)); | “

‘addr <= my_addr.rand (fange_weight)(0,18,4) , (19,31,1)) ‘

10 Speed up VHDL verification significantly £ EmLoch

Coding for readability

Quality & Efficiency enablers

L] Structure & Architecture Simplicity
° [e, Rty

L} [HOINBLY, MBSOy, EXTEnsiLity |
. [Dty]

= Easy to Maintain and Extend [[|

Typing code consumes is an insignificant part of the development time.

Reading and understanding code is repeated over and over again, and
is thus a significant part of the development time

addr <= my addr.rand(0, 13@0,31){7));

= Investing in better code yields a huge return on investment

11 Pragmatically improve your FPGA verification £ EmLogic

UVVM System

BFMs.

Functional Coverage v e

Transactions | _Coverage

WWCs.

Coverage

Error

Monitor Scoreboard| Injection

= Functional Coverage is valon Sheam AR, ST, SB10, 19C,

‘a user-defined metric that measures how much of BRI P
the design specification has been exercised in verification'

* Has various functional scenarios been tested.
* A manual process is required to set up all wanted scenarios

= Time consuming, but
Great to check that various specific scenarios have been verified

E.g. For a UART
- Has payload started and ended with both 0 and 1 (4 permutations)
- Has odd and even parity been tested
- AND with the payload variation above
- Has selected cases of baud rate vs clock rate been tested

12 Pragmatically improve your FPGA verification £ EmLogic

Some FC reports — out of many

v

VWM © ns *** COVERAGE SUMMARY REPORT (NON VERBOSE): T8 seq. **=
2 Lm

v HITS MIN HITS HIT COVERAGE TLLEGAL/TGNORE
5 e

L {256 to 511) N/A ILLEGAL

* o (@ to 125) 6 s -

v azs, 127, 128) 3

o (129 t0 255) 1e G mem_adar_hign

oo (8-31-32-53) e 2 Sransition 1

v transition_2 2 2 transitior
i transition 2: (0->15->127->248->249->250-5251->252-5253->254

+ v
o uwm;
S 0 ne W> REOSE): T seq. *re
8 UH; Coverage 7 T 50.00%, Bins: 73.68%, Hits: 76.00%
& s
. €OVERPOINT\ COVERAGE WEIGHT COVERED BINS COVERAGE(BINS|WITS) GOAL(BINSIHITS) % OF GOAL(BINS|HITS)
' Covpt_1 1 345 50.00% | 76.47% so% | 1008 100.00% | 76.47%
H Covpt_2 1 303 100008 | 100,005 100% | lo0% 100.00% | 100, 00%
' covpr 3 1 6/6 100.00% | 100008 1c0% | Loo 100.00% | 100, 00%
& Covpt_& 1 0/ 4 0.00% | 0.00% 100% | 100% 0.00% | 0.00%
' covpt_5 1 0/t o.00% | o 1008 | 100% o.00% | 0.
: covpt_8 1 4ra 100.00% | 100.00% 100% | 100K 100,008 | 100.00%
’ covpt 7 1 03 o.00% | 0.00% 100% | 1008 a.00% | 0.00%
van: coupt_8 1 12712 100.00% | 100.00% 100% | 100% 160.00% | 100.00%
2w

13 Pragmatically improve your FPGA verification £ EmLogic

Optimised randomisation

s

= Optimised Randomisation is \ o
b o
* Randomisation without replacement 3

* Weighted according to target distribution
AND previous events.

Thus for the protocol payload of 0-256 bytes:

—
.l I N ’
3 10

min_hits

- Optimised randomisation yields
the lowest number of randomisations for a given target

= Major reduction in # packets and thus simulation time

Again: Imagine a payload between 0 to 65.536 bytes...

14 Pragmatically improve your FPGA verification [EmLogic

-esa

Specification Coverage

= Assure that all requirements have been verified
1.Specify all requirements

2.Report coverage from test sequencer(s) (or other TB parts)

3.Generate summary report

+ Coverage per requirement Requirements

+ Test cases covering each requirement Trahfl::?r?)i(lity

+ Requirements covered by each Test case

+ Accumulate over multiple Test cases
Mandatory for Safety and Mission Critical
(Strictly required by ESA) UVVM System
Strongly recommended for good quality assurance T
Expensive tools exist... Ij_’é"'“‘ M

rary | Transactions

Solutions exist to report that a testcase finished successfully Watchdogs WWCs

BUT - reporting that a testcase has finished is not sufficient Monitor Scoreboard|

AXI-light, AXI-stream, Avalon MM,
Avalon Stream, UART, SPI, GPIO, 12C,
SBI, GMII, RGMII, Ethernet, .

15 Pragmatically improve your FPGA verification

sleration shall be
The final position shall be **=

= What if multiple requirements are
covered by the same testcase?
* E.g. Moving/turning something to a to a given position
R1: Acceleration R2: Speed R3: Deceleration 4: Position etc..

TC10—~@R1

TC2@=——=8R2 TC1 @@ @@
TC 3@ @R 3 Vs R1 R2 R3R4
TC4.—.R4

= Generates various types of reports

* Coverage per requirement

* Test cases covering each requirement

* Requirements covered by each Test case
= Accumulated over multiple Test cases

16 Pragmatically improve your FPGA verification £ EmLogic

AXI-stream - BFM based TB

BFM based Testbench

clock_generator
DUT
axis | |0 |, s
slave master

= Sequencer has direct access to DUT signals
* Thus BFMs from p_main can also see the DUT signals

p_main (test-sequencer)

axistream transmit(data, ...)
axistream receive(data,...)
axistream_expect (data, ...)

= No test harness (for simplicity)

= BFMs are sequential procedures running UVVM System

in sequence in p_main. Utility |._BFMs [Constr. Rand.
Y Functional
Librany unctional
Transactions | Coverage
Watchdogs wves [“Recification
overage
; Error
Monitor Scoreboard| 1

AXI-light, AXI-stream, Avalon MM,
Avalon Stream, UART, SPI, GPIO, 12€,
SBI, GMII, RGMII, Ethernet,

Pragmatically improve your FPGA verification

Resulting transcript +Debug

Note: Removed Prefix and Scope to show on a single line.

[axistream transmit(v_byte_array, msg, clk, m axis); |

‘ ID_BFM 106.0 ns axistream transmit (3B)=> Tx DONE. ‘
‘axistream_expect(v_exp_array(o to 2), "", clk, s_axis); ‘
‘ ID_BFM 122.0 ns axistream expect(3B)=> OK, received 3B. ‘

/May add more info for debugging

[enable_1og_msg(ID_PACKET_INITIATE) ; enable_log_msg (ID_PACKET_DATA) ; |

ID_PACKET_ INITIATE 52.0 ns axistream transmit(3B)=>
ID_PACKET DATA 52.0 ns axistream transmit(3B)=> Tx x"00", byte# 0.
ID_PACKET DATA 68.0 ns axistream transmit(3B)=> Tx x"01", byte# 1.
ID_PACKET_DATA 82.0 ns axistream transmit(3B)=> Tx x"02", byte# 2.
ID_PACKET COMPLETE 106.0 ns axistream transmit(3B)=> Tx DONE.

May add similar debugging info for data reception

18 Pragmatically improve your FPGA verification £ EmLOg ic

Advanced BFM usage - in simple TB

tkeep, tuser, tlast,

= May utilise more of the protocol: tstrb, tid, tdest
’ ,

= May define different widths
= May configure behaviour:

* Set maximum wait cycles
May set to match data exact or std_match
May set byte endianness (for SLV larger than data width)
May set to de-assert tvalid some cycles (randomly or fixed)
May set to de-assert tready some cycles (randomly or fixed)

* And more...

Have enabled lots of bug detection in users' AXI stream interfaces

Word index during which the Master BFM shall deassert

alid_low_at _word num
vaiic_tow at_wordl valid while sending a packet.

[valid_low_duration [Number of clock cycles to deassert valid.]

[valid_low multiple random prob |

Similar for ‘ready’

[valid_low max_random duration |

19 Pragmatically improve your FPGA verification

f EmLogic

What if we need to check the DUT
for simultaneous activity?

BFM based Testbench

clock_generator

p_main (test-sequencer)

DUT
axistream transmit(data, ...) i]vc W@
axistream receive(data, ...)
axistream_expect (data, ...) AXIS —_— FIFO bl
slave master

- BFMs are great for simple testbenches - To do more than one thing:

Dedicated procedures in a simple package
Just reference and call from a process
- BUT
A process can only do one thing at a time
- Either execute that BFM
- Or execute another BFM
- Or do something else

Pragmatically improve your FPGA verification

- Need multiple "threads"
- Could use multiple processes
Need inter process communication
- Leads to chaos - as for design
- Need an entity (or component)
(VC = Verification Component)
- Need a defined protocol

[EmLogic

VVC: VHDL Verification Component

SBI_VVC

Interpreter

- Is command for me?

Executor
- Fetch from queue
- Case on what to do

- Call relevant BFM(s)
& Execute transaction

- Is it to be queued?

Command
Queue

- If not:
Case on what to do

UVVM System B

‘Sequencer
Utility BFMs__ [Constr. Rand..
Library ™ Functional
Transactions | Coverage
Specification
Coverage
Error
Injection
Axl-light, AXI-stream, Avalon MM,
Avalon Stream, UART, SPI, GPIO, 12€, Pragmatically improve your FPGA verification [
SBI, GMII, RGMII, Ethernet, ...

atchdeggl WVCs

Monitor Scoreboar

EmLogic

AXI-stream - VVC based TB (1)

VVC based Testbench

p_main
(test-sequencer)

._tx(target, data, ...
._rx(target, data, ..

axistream_transmit(target, data,
axistream_expect(target, data, ..

[clock_generator | BFM based Testbench
S p_main

((test-sequencer) puT
axis.._tx(dats, ..); AXIS AXIS
i FIFO
IR slave master
< 4
22 Pragmatically improve your FPGA verification £ EmLogic

Debugging is equally important

According to Wilson research: On average...
= Verification is 50% of total development time
= Debug is 50% of verification. I.e. 25% of total development

Same issues:

Structure & ¢ Mismatch reports are important
Architecture | SIMPIICHY

— — — * Progress report is critical
—_— * Detailed progress report is

sometimes needed

[Daiagabisty

Reusability

23 Pragmatically improve your FPGA verification

£ EmlLogic

Resulting transcript +Debug

Note the changing scope

axistream transmit (AXISTREAM VVCT,0, v_data_array, msg); ‘

| ID_UVVM_SEND_CMD 50.0 ns | TB seq./(uvvm)
; ->axistream transmit (AXISTREAM VVC,0, 512 bytes): 'TX 512B' (([6]
| ID_PACKET_DATA 24202.0 ns AXISTREAM VVC,0

axistream_transmit(512B)=> Tx x"ED", byte# 493. 'Tx 5128B' ([6]

| ID_PACKET_ COMPLETE 24346.0 ns |AXISTREAM VVC,0

axistream_transmit (512B)=> Tx DONE. 'TX 512B' ([6]

axistream expect (AXISTREAM VVCT,1, v_exp_array, "Expecting **** "); ‘

| ID_UVVM_SEND_CMD 50.0 ns TB seq. (uvvm)
' “>axistream_expect bytes (AXISTREAM VVC,1, 512b): 'Expecting 512b' @

|- Plus similar additional verbosity as for Transmit
{ - Plus for both: Debug when I

ter and

24 Pragmatically improve your FPGA verification [EmlLogic

VVC: Easy to extend & modify

- Easy to add local sequencers
- Easy to add checkers/monitors/etc

Interpreter *_VVC

- Is command for me?

- Is it to be queued? Command ﬂ - Case on what to do

- If not: Queue - Call relevan BFM(;)
Case on what to do & Execute transaction

Frame-rate checker
Gap checker

Checkers are better included as parallel processes.
VVC architecture allows simple inclusion and control

VVCs: Extended

- Easy to handle split transactions
- Easy to handle out of order execution

Interpreter *_VVC Executor

- Is command for me? - Fetch from queue

- Is it to be queued?

- If not:
Case on what to do

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Response-Executor

Multi-thread interface handling is better controlled as a pipeline
VVC architecture allows simple inclusion - with queuing and control i

a

= Allows overview to be kept - for something that normally creates chaos...

VVC Advantages " ‘BSui

- Command structure

= Simultaneous activity on multiple interfaces
= Encapsulated - Reuse at all levels
= Queue -> May initiate multiple high level commands
= Local Sequencers for predefined higher level commands
®* Only in UVVM VVCs:
* UNIQUE: Control all VVCs from a single sequencer!

® May insert delay between commands - from sequencer
- The only system to target cycle related corner cases

* Simple handling of split transactions and out of order protocols
¢ Common commands to control VVC behaviour

* Simple synchronization of interface actions - from sequencer

® May use Broadcast and Multicast

Better Overview, Maintenance, Extensibility and Reuse \

27 Pragmatically improve your FPGA verification £ EmLogic

VVCs: Too advanced???

Advanced functionality is great when needed, but what if not???
- If using an existing VVC, just ignore it. Use it out of the box - without the extras.
- If making your own VVC, don't include the advanced stuff

Skip it in the VVC generator, or don't include it if you copy the architecture.

Interpreter *_VVC Executor

- Is command for me? - Fetch from queue

- Is it to be queued? - Case on what to do

- If not: Command - Call relevant BFM(s)
Case on what to do Queue & Execute transaction

[Scoreboard [Bit-rate checker }

erd |
T

[Queue]

Response-Executor
CR + FC Gap checker [E ?

[Frame-rate heck }

28 Pragmatically improve your FPGA verification £ EmlLogic

Simplicity where needed the most

VVC based Testbench | yy¢ pased Test harness

a BuT TB with harness

r p_main .
(test-sequencer)

ais._te{target, data, ..}; s XIS AXIS VVCs
e oot e |- &
4 [|

Master e, Test sequencer

axistream_ transmit (AXISTREAM VVCT,0, v_data_array, msg);

axistream expect (AXISTREAM VVCT,1, v_exp_array, "Expecting **** ");

Totalt Workload percentages for various scenarios

Project B Test sequencer is by far the most time consuming
= The most important to simplify

o Prm:ea < => Especially for medium to complex DUTs
Il Project D

\ Not investing in a good architecture < Test sequencer time may increase a lot

29 Pragmatically improve your FPGA verification £ EmLogic

L’0ts of free UVVM BFMs and VVCs

* AXI4-lite Al
° AXI4 Full - Free
° AXI-Stream Transmit and Receive - Svpﬁ”dsw"ce -
n " - Wel ocumente
.
UART Transmit and Receive - Example Testbenches
* SBI
. . .
SPI Transm!t and Rece!ve The largest collection
* I2C Transmit and Receive of
* GPIO VHDL Interface Models
* Avalon MM
UVVM System it and Receive
Utilit BFMs Constr. Rand.2Cceive VVC: VHDL Verif. Comps.
uhrary LM Functional - - Includes the corresponding BFM
| Transactions | Coverage eive Allows:
Specification| Receive - Simultaneous interface handling
atchdogs) WWCs Coverage - Synchronization of interfaces
N Error - Skewing between interfaces
LI [Seoreboard Injection | - Additional protocol checkers
AXI-light, AXI-stream, Avalon MM, - Local sequencers
Avalon Stream, UART, SPI, GPIO, I2C, - Activity detection
BI, GMII 1, Ethes - Simple reuse between projects

30 Pragmatically improve your FPGA verification £ EmLogic

Advanced scoreboard-based TB

e buT »umnnn ap]AXI4- Stream)
Yot - Model Scoreboard
Od A

oo Clock-Gen
(test-sequencer) s }r. DUT
3
tx(target, data, ...); — AXIS AXIS
rx(target, data ...); - h AFo | AX
Master VVC — —— 1

AX14-

Stream

Slave VWC
<

‘ axistream transmit (AXISTREAM VVCT,0, v_data array, msg); UVVM System

BFMs Constr. Rand.

‘ axistream receive (AXISTREAM VVCT,1, v_data_arg Mty

Library Functional

=t
. - | Transactins | Coverage
Model and Scoreboard allow functionality to be removed Watchdogs| wvcs | opeciication

T . Coverage
=> Simplifies both overview and test sequ - | Emrg
Monitor |Fmrehnard Injection

AXI-light, AXI-stream, Avalon MM,
31 Pragmatically improve your FPGA verification Avalon Stream, UART, SPI, GPIO, 12C,
SBI, GMII, RGMII, Ethernet,

A good architecture allows
better understanding at all levels

Interpreter *_wvc Executor
s command for me? Faiah trom qunie.
I fto be queved? e —a n
a pre— Case an what to 0o

¥ ot o] Cail refevsnt B wiz)
Gase en what o do 8 Exerute transaction

WVVC based Testbanch | VVC based Test harnass

R

dtaroet, deta, ..); a5 |
ettt dots, . ﬂ

H
Bit-rate checker uu;uo

Frama-rats checkar

o Response-txcutor

- Standard Interface
- Standard Protocol
- Standard common commands

- Standard Status interface

- Standard Config interface

- Standard handling of multiple VVCs
- Standard VVC synchronization

- Standard multicast/broadcast

- Standard VVC internal
architecture

- Standard VVC control of checkers

- Standard queuing system

- Standard handling of
multi-threaded interfaces

- Standard debug support

/

‘ Simplification ‘ ‘ VVCs from different users will work together ‘

‘ Users know how VVCs behave and how any test harness will work ‘

32 Pragmatically improve your FPGA verification £ EmlLogic

The full picture (1)

Is this too much? Too many VIP components? Too much structure?

Testbench
Test Test harness
Seq.
[Etermess] Semer | [modl [et
Error Injectort | UART Monitor_| [Activitywo | [wo timer |
33 Pragmatically improve your FPGA verification £ EmLogic
VVCs are needed to check multiple interfaces
Testbench
Test Test harness
Seq.

[model] | Ethernet Ethernet_SB
e —
s

Ethernet_SB 4—-| it
wve
"

10

GMII_WC

UART_WC SPI_WC

Y
Error Injectort | UART Monitor_| [Activitywo | [wo timer |

GMII_SB

SPI_SB

34 Pragmatically improve your FPGA verification [EmLogic

The full picture (3)

Removing VIPs =
Putting Wanat fifivetiorsatitplifiyd téhs2@quencer
- only very unstructured, less overview, not maintainable, not very reusable

Testbench

~

Test harness

Ethernet_SB o—-l Ethernet
we

:Error Injector? |_UART Monitor | [Activitywo | [wo timer |

[model] | Ethernet Ethernet_sB

e

I

SBI_WC

UART_WC

Debugging is much easier with a good architecture
(25% of development, acc. to Wilson Research 2020 survey)

35 Pragmatically improve your FPGA verification £ EmLogic

Improving verification in general?

= Awareness, awareness, awareness

) Structure &
= Allow time up front to structure Architecture. AR
= Discuss your testbench architecture { Ovarviaw, Readabiity }

before coding
* Sparring partner
¢ Walkthrough {
= Same applies to
* Control & status of all stimuli & checkers ‘
* Reaching Corner cases
+ Value and Cycle related

[Modifiability, Maintainability, Extensibility]

Debuggability

Reusability

=> Divide and conquer at all stages
= Prioritise the reader at all times

36 Pragmatically improve your FPGA verification £ EmlLogic

Recap:
The 2022 Wilson Research Group Functional Verification Study (2)

Half the verification time is spent on debugging

planning

Creating test an

h) L Testbench
running simulation

development

2022 WILSON RESEARCH GROUP, FUNCTIONAL VERIFICATION STUDY
FPGA FUNCTIONAL VERIFICATION TREND REPORT

We can definitely be more efficient! - structured! ‘

37 Pragmatically improve your FPGA verification A EmLogic

Huge improvement potential

Other

Test
planning

Creating test an

N . Testbench
running simulation

development

= Assume a 6000 hour project > 3000 hour verification
= 50% improvement - 1500 hours saved

38 Pragmatically improve your FPGA verification A EmLogic

Courses

= FPGA (and ASIC) Verification:

'‘Advanced VHDL Verification — Made simple’
® FPGA (and ASIC) Design:

'Accellerating FPGA and Digital ASIC Design’

Design Verif

- Design Architecture & Structure - Verification Architecture & Structure

- Clock Domain Crossing - Self checking testbenches

- Coding and General Digital Design - BFMs — How to use and make

- Reuse and Design for Reuse - Checking values, time aspects, etc

- Timing Closure - Verification components

- Quality Assurance - at the right level - Advanced Verif: Scoreboard, Models, etc
- Faster and safer design - State-of-the-art verification methodology

Next courses Online in November.
More courses on demand: On-site, Online, Public, or Hybrid

‘ https://emlogic.no/courses, ‘

39 Pragmatically improve your FPGA verification A EmLogic

40 Pragmatically improve your FPGA verification A EmLogic

UVVM in a nutshell

= Huge improvement potential for more structured FPGA verification

Structure & Architecture — ‘ UVVM (incl. all) is Open Source ‘

‘ Game changer for efficiency & quality ‘

Overview, Readability

UVVM has the largest collection of

Modifiability, Maintainability, Extensibility b
interface models (as BFMs and VVCs)

‘ Debuggability

@cesa IEEE SA QPE]
Reusability
SIEMENS Menfor | | ALDEC)
UVVM may save 200-2000 hours Usage is exploding
on a medium complex project - Fastest growing FPGA verification
And at the same time improve methodology - of all
TTM, MTBF & LCC

41 Pragmatically improve your FPGA verification £ EmlLogic

Notes

T=SSO0OLVE

A HERO ELECTRONIX VENTURE

Tessolve (a Hero Electronix Venture) is the leading
engineering service/solution provider with 3000+
employees worldwide and a full breadth of pre-and
post-silicon expertise. Tessolve provides a one-stop-
shop solution with full-fledged hardware and
software capabilities, including its advanced silicon
and system testing labs. We have Test labs in India,
the US, Malaysia, and Singapore.

Analog and
Digital ICDesign

Tessolve offers complete Turnkey ASIC Solutions,
Producion (ISR g from design to packaged parts. We are actively
e y investing in the Center of excellence initiatives such
as 5G, RISC-V subsystems, high power PMICs,
HSIO, HBM/3D/Chiplets, system-level tests,
advanced verification methodologies, and others.

Silicon to
Product
| Development

Tessolve also offers end-to-end product design
i services in the embedded domain from concept to

manufacturing under an ODM model with application
expertise in Avionics, Automotive, Data Center/
Enterprise, Industrial/loT and Semiconductor
segments. We are ISO 9001:2015 certified and our
Embedded team is ISO9001 & EN9100 Quality
certified.

Visit www.tessolve.com for more information.

Chip Design Test/Product Hardware Embedded
Engineering Development Systems
) il (
180nm
Advanced Process Test Programs PCB Designs Per Embeggzgssé);stems
Development Released Month
. : -
950+ . 30+ 60+ 50%
Engineers executing ; Automated Test Experience with ~+ Over 50% employees *
Specs to Equipment supported 60+ layers PCB : with 10+ years’
GDSI! solutions = design + Sl + Pl . experience

Tessolve DTS Inc

Mike Bartley Marc Waugh 4210 South Industrial Drive
Senior Vice President Director Sales &

: > STE 140
VLS| Design Marketing . T=SSOLVE
+44 (0)779 630 7958 512-461-4017 Austin, TX 78744, USA e TR VT i
mike.bartley@tessolve.com marc.waugh@tessolve.com Email: sales @tessolve.com

A N VU

Notes

T=SSOLVE SILICON AND SYSTEMS
A HERO ELECTRONIX VENTURE SOLUTION PARTNER

Silicon to
Product

Development

INDUSTRY FOCUS

Automotive Avionics Data Center/Enterprise

Industrial/loT Semiconductor

Notes

CALL FOR PAPERS

Whatever your specialty, Verification Futures provides an excellent opportunity to share your experiences and
insights on the key technical and industry challenges we face in verification.

Submit an Abstract for VF2025

We are now seeking submissions for presentations and papers describing interesting and innovative
experiences related to challenges faced in hardware verification. These submissions should include a brief
description of the ASIC, SoC and FPGA verification challenges that need to be addresses and/or innovative
solutions to improving verification. Abstracts should be targeted toward a technical audience of hardware
verification engineers. Abstracts may also address the safety and security issues relating to verification.

Submission Dates

Call for Papers Opens UK & USA 12 September 2024
Final Presentations Required UK 31 March 2025
Final Presentations Required USA 30 June 2025

Abstract Submissions

Abstract submissions should be no more than 2,500 characters and include a short biography of the speaker.
All abstracts will be reviewed and notice of acceptance will be sent via email.

To submit your abstract please sent to — mike.bartley@tessolve.com and for guidance please visit
https://www.tessolve.com/verification-futures/

About Verification Futures 2025

Verification Futures is a unique one-day conference, exhibition and industry networking event organized by
Tessolve to discuss the challenges faced in hardware verification. The event gives the opportunity for end
users to define their current and future verification challenges and collaborate with the vendors to create
solutions. It’s also an excellent opportunity to network and catch up with other verification engineers across
Europe & USA.

mailto:mike.bartley@tessolve.com
https://www.tessolve.com/verification-futures/

We hope you have found the conference interesting and informative

Slides and recordings will be available on the Tessolve Website

https://www.tessolve.com/verification-futures/vf2024-austin-usa/

2024

VERIFICATION FUTURES

https://www.tessolve.com/verification-futures/vf2024-austin-usa/

